Abstract:Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
Abstract:Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.
Abstract:The scalability of large language models (LLMs) in handling high-complexity models and large-scale datasets has led to tremendous successes in pivotal domains. While there is an urgent need to acquire more training data for LLMs, a concerning reality is the depletion of high-quality public datasets within a few years. In view of this, the federated learning (FL) LLM fine-tuning paradigm recently has been proposed to facilitate collaborative LLM fine-tuning on distributed private data, where multiple data owners collaboratively fine-tune a shared LLM without sharing raw data. However, the staggering model size of LLMs imposes heavy computing and communication burdens on clients, posing significant barriers to the democratization of the FL LLM fine-tuning paradigm. To address this issue, split learning (SL) has emerged as a promising solution by offloading the primary training workload to a server via model partitioning while exchanging activation/activation's gradients with smaller data sizes rather than the entire LLM. Unfortunately, research on the SL LLM fine-tuning paradigm is still in its nascent stage. To fill this gap, in this paper, we propose the first SL LLM fine-tuning framework, named SplitLoRA. SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL and thus greatly enhancing the training efficiency. It is worth noting that SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning, providing a foundation for research efforts dedicated to advancing SL LLM fine-tuning. Extensive simulations validate that SplitLoRA achieves target accuracy in significantly less time than state-of-the-art LLM fine-tuning frameworks, demonstrating the superior training performance of SplitLoRA. The project page is available at https://fduinc.github.io/splitlora/.
Abstract:Low Earth Orbit satellite Internet has recently been deployed, providing worldwide service with non-terrestrial networks. With the large-scale deployment of both non-terrestrial and terrestrial networks, limited spectrum resources will not be allocated enough. Consequently, dynamic spectrum sharing is crucial for their coexistence in the same spectrum, where accurate spectrum sensing is essential. However, spectrum sensing in space is more challenging than in terrestrial networks due to variable channel conditions, making single-satellite sensing unstable. Therefore, we first attempt to design a collaborative sensing scheme utilizing diverse data from multiple satellites. However, it is non-trivial to achieve this collaboration due to heterogeneous channel quality, considerable raw sampling data, and packet loss. To address the above challenges, we first establish connections between the satellites by modeling their sensing data as a graph and devising a graph neural network-based algorithm to achieve effective spectrum sensing. Meanwhile, we establish a joint sub-Nyquist sampling and autoencoder data compression framework to reduce the amount of transmitted sensing data. Finally, we propose a contrastive learning-based mechanism compensates for missing packets. Extensive experiments demonstrate that our proposed strategy can achieve efficient spectrum sensing performance and outperform the conventional deep learning algorithm in spectrum sensing accuracy.
Abstract:Recently, there has been a surge in the development of advanced intelligent generative content (AIGC), especially large language models (LLMs). However, for many downstream tasks, it is necessary to fine-tune LLMs using private data. While federated learning offers a promising privacy-preserving solution to LLM fine-tuning, the substantial size of an LLM, combined with high computational and communication demands, makes it hard to apply to downstream tasks. More importantly, private edge servers often possess varying computing and network resources in real-world scenarios, introducing additional complexities to LLM fine-tuning. To tackle these problems, we design and implement an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost but without adding any inference latency. FedPipe firstly identifies the weights to be fine-tuned based on their contributions to the LLM training. It then configures a low-rank adapter for each selected weight to train local low-rank adapters on an edge server, and aggregate local adapters of all edge servers to fine-tune the whole LLM. Finally, it appropriately quantizes the parameters of LLM to reduce memory space according to the requirements of edge servers. Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.
Abstract:Connected and autonomous driving is developing rapidly in recent years. However, current autonomous driving systems, which are primarily based on data-driven approaches, exhibit deficiencies in interpretability, generalization, and continuing learning capabilities. In addition, the single-vehicle autonomous driving systems lack of the ability of collaboration and negotiation with other vehicles, which is crucial for the safety and efficiency of autonomous driving systems. In order to address these issues, we leverage large language models (LLMs) to develop a novel framework, AgentsCoDriver, to enable multiple vehicles to conduct collaborative driving. AgentsCoDriver consists of five modules: observation module, reasoning engine, cognitive memory module, reinforcement reflection module, and communication module. It can accumulate knowledge, lessons, and experiences over time by continuously interacting with the environment, thereby making itself capable of lifelong learning. In addition, by leveraging the communication module, different agents can exchange information and realize negotiation and collaboration in complex traffic environments. Extensive experiments are conducted and show the superiority of AgentsCoDriver.
Abstract:Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.
Abstract:As researchers strive to narrow the gap between machine intelligence and human through the development of artificial intelligence technologies, it is imperative that we recognize the critical importance of trustworthiness in open-world, which has become ubiquitous in all aspects of daily life for everyone. However, several challenges may create a crisis of trust in current artificial intelligence systems that need to be bridged: 1) Insufficient explanation of predictive results; 2) Inadequate generalization for learning models; 3) Poor adaptability to uncertain environments. Consequently, we explore a neural program to bridge trustworthiness and open-world learning, extending from single-modal to multi-modal scenarios for readers. 1) To enhance design-level interpretability, we first customize trustworthy networks with specific physical meanings; 2) We then design environmental well-being task-interfaces via flexible learning regularizers for improving the generalization of trustworthy learning; 3) We propose to increase the robustness of trustworthy learning by integrating open-world recognition losses with agent mechanisms. Eventually, we enhance various trustworthy properties through the establishment of design-level explainability, environmental well-being task-interfaces and open-world recognition programs. These designed open-world protocols are applicable across a wide range of surroundings, under open-world multimedia recognition scenarios with significant performance improvements observed.