Abstract:Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
Abstract:Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.
Abstract:Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
Abstract:Autonomous driving has attracted significant attention from both academia and industries, which is expected to offer a safer and more efficient driving system. However, current autonomous driving systems are mostly based on a single vehicle, which has significant limitations which still poses threats to driving safety. Collaborative perception with connected and autonomous vehicles (CAVs) shows a promising solution to overcoming these limitations. In this article, we first identify the challenges of collaborative perception, such as data sharing asynchrony, data volume, and pose errors. Then, we discuss the possible solutions to address these challenges with various technologies, where the research opportunities are also elaborated. Furthermore, we propose a scheme to deal with communication efficiency and latency problems, which is a channel-aware collaborative perception framework to dynamically adjust the communication graph and minimize latency, thereby improving perception performance while increasing communication efficiency. Finally, we conduct experiments to demonstrate the effectiveness of our proposed scheme.
Abstract:The increasingly deeper neural networks hinder the democratization of privacy-enhancing distributed learning, such as federated learning (FL), to resource-constrained devices. To overcome this challenge, in this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL), allowing multiple client devices to offload substantial training workloads to an edge server via layer-wise model split. By observing that existing PSL schemes incur excessive training latency and large volume of data transmissions, we propose an innovative PSL framework, namely, efficient parallel split learning (EPSL), to accelerate model training. To be specific, EPSL parallelizes client-side model training and reduces the dimension of local gradients for back propagation (BP) via last-layer gradient aggregation, leading to a significant reduction in server-side training and communication latency. Moreover, by considering the heterogeneous channel conditions and computing capabilities at client devices, we jointly optimize subchannel allocation, power control, and cut layer selection to minimize the per-round latency. Simulation results show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy compared with the state-of-the-art benchmarks, and the tailored resource management and layer split strategy can considerably reduce latency than the counterpart without optimization.
Abstract:Multi-access edge computing (MEC) is an emerging paradigm that pushes resources for sensing, communications, computing, storage and intelligence (SCCSI) to the premises closer to the end users, i.e., the edge, so that they could leverage the nearby rich resources to improve their quality of experience (QoE). Due to the growing emerging applications targeting at intelligentizing life-sustaining cyber-physical systems, this paradigm has become a hot research topic, particularly when MEC is utilized to provide edge intelligence and real-time processing and control. This article is to elaborate the research issues along this line, including basic concepts and performance metrics, killer applications, architectural design, modeling approaches and solutions, and future research directions. It is hoped that this article provides a quick introduction to this fruitful research area particularly for beginning researchers.