Abstract:Currently many benchmarks have been proposed to evaluate the perception ability of the Large Vision-Language Models (LVLMs). However, most benchmarks conduct questions by selecting images from existing datasets, resulting in the potential data leakage. Besides, these benchmarks merely focus on evaluating LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized images and noisy scenarios unexplored. In response to these challenges, we propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs by leveraging synthesis images. Specifically, we leverage Stable Diffusion and design a rule-based method to dynamically generate novel images, questions and the corresponding answers. We consider 51 kinds of image styles and evaluate the perception capability in 20 subtasks. Moreover, we conduct evaluations under 4 scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and 3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the generative paradigm, Dysca serves as a scalable benchmark for easily adding new subtasks and scenarios. A total of 8 advanced open-source LVLMs with 10 checkpoints are evaluated on Dysca, revealing the drawbacks of current LVLMs. The benchmark is released in \url{https://github.com/Benchmark-Dysca/Dysca}.
Abstract:Accurate segmentation of polyps in colonoscopy images is essential for early-stage diagnosis and management of colorectal cancer. Despite advancements in deep learning for polyp segmentation, enduring limitations persist. The edges of polyps are typically ambiguous, making them difficult to discern from the background, and the model performance is often compromised by the influence of irrelevant or unimportant features. To alleviate these challenges, we propose a novel model named Edge-Prioritized Polyp Segmentation (EPPS). Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps. Subsequently, an Edge Information Injector (EII) is devised to augment the mask prediction by injecting the captured edge information into Decoder blocks. Furthermore, we introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model. Extensive experiments on 3 widely used polyp segmentation benchmarks demonstrate the superior performance of our method compared with other state-of-the-art approaches.