Abstract:Existing Image Quality Assessment (IQA) methods achieve remarkable success in analyzing quality for overall image, but few works explore quality analysis for Regions of Interest (ROIs). The quality analysis of ROIs can provide fine-grained guidance for image quality improvement and is crucial for scenarios focusing on region-level quality. This paper proposes a novel network, SEAGULL, which can SEe and Assess ROIs quality with GUidance from a Large vision-Language model. SEAGULL incorporates a vision-language model (VLM), masks generated by Segment Anything Model (SAM) to specify ROIs, and a meticulously designed Mask-based Feature Extractor (MFE) to extract global and local tokens for specified ROIs, enabling accurate fine-grained IQA for ROIs. Moreover, this paper constructs two ROI-based IQA datasets, SEAGULL-100w and SEAGULL-3k, for training and evaluating ROI-based IQA. SEAGULL-100w comprises about 100w synthetic distortion images with 33 million ROIs for pre-training to improve the model's ability of regional quality perception, and SEAGULL-3k contains about 3k authentic distortion ROIs to enhance the model's ability to perceive real world distortions. After pre-training on SEAGULL-100w and fine-tuning on SEAGULL-3k, SEAGULL shows remarkable performance on fine-grained ROI quality assessment. Code and datasets are publicly available at the https://github.com/chencn2020/Seagull.
Abstract:Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: https://github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
Abstract:Monocular depth estimation, enabled by self-supervised learning, is a key technique for 3D perception in computer vision. However, it faces significant challenges in real-world scenarios, which encompass adverse weather variations, motion blur, as well as scenes with poor lighting conditions at night. Our research reveals that we can divide monocular depth estimation into three sub-problems: depth structure consistency, local texture disambiguation, and semantic-structural correlation. Our approach tackles the non-robustness of existing self-supervised monocular depth estimation models to interference textures by adopting a structure-centered perspective and utilizing the scene structure characteristics demonstrated by semantics and illumination. We devise a novel approach to reduce over-reliance on local textures, enhancing robustness against missing or interfering patterns. Additionally, we incorporate a semantic expert model as the teacher and construct inter-model feature dependencies via learnable isomorphic graphs to enable aggregation of semantic structural knowledge. Our approach achieves state-of-the-art out-of-distribution monocular depth estimation performance across a range of public adverse scenario datasets. It demonstrates notable scalability and compatibility, without necessitating extensive model engineering. This showcases the potential for customizing models for diverse industrial applications.
Abstract:With the rising demand for high-resolution (HR) images, No-Reference Image Quality Assessment (NR-IQA) gains more attention, as it can ecaluate image quality in real-time on mobile devices and enhance user experience. However, existing NR-IQA methods often resize or crop the HR images into small resolution, which leads to a loss of important details. And most of them are of high computational complexity, which hinders their application on mobile devices due to limited computational resources. To address these challenges, we propose MobileIQA, a novel approach that utilizes lightweight backbones to efficiently assess image quality while preserving image details through high-resolution input. MobileIQA employs the proposed multi-view attention learning (MAL) module to capture diverse opinions, simulating subjective opinions provided by different annotators during the dataset annotation process. The model uses a teacher model to guide the learning of a student model through knowledge distillation. This method significantly reduces computational complexity while maintaining high performance. Experiments demonstrate that MobileIQA outperforms novel IQA methods on evaluation metrics and computational efficiency. The code is available at https://github.com/chencn2020/MobileIQA.
Abstract:Map-free relocalization technology is crucial for applications in autonomous navigation and augmented reality, but relying on pre-built maps is often impractical. It faces significant challenges due to limitations in matching methods and the inherent lack of scale in monocular images. These issues lead to substantial rotational and metric errors and even localization failures in real-world scenarios. Large matching errors significantly impact the overall relocalization process, affecting both rotational and translational accuracy. Due to the inherent limitations of the camera itself, recovering the metric scale from a single image is crucial, as this significantly impacts the translation error. To address these challenges, we propose a map-free relocalization method enhanced by instance knowledge and depth knowledge. By leveraging instance-based matching information to improve global matching results, our method significantly reduces the possibility of mismatching across different objects. The robustness of instance knowledge across the scene helps the feature point matching model focus on relevant regions and enhance matching accuracy. Additionally, we use estimated metric depth from a single image to reduce metric errors and improve scale recovery accuracy. By integrating methods dedicated to mitigating large translational and rotational errors, our approach demonstrates superior performance in map-free relocalization techniques.
Abstract:Explaining the decisions of Deep Neural Networks (DNNs) for medical images has become increasingly important. Existing attribution methods have difficulty explaining the meaning of pixels while existing concept-based methods are limited by additional annotations or specific model structures that are difficult to apply to ultrasound images. In this paper, we propose the Lesion Concept Explainer (LCE) framework, which combines attribution methods with concept-based methods. We introduce the Segment Anything Model (SAM), fine-tuned on a large number of medical images, for concept discovery to enable a meaningful explanation of ultrasound image DNNs. The proposed framework is evaluated in terms of both faithfulness and understandability. We point out deficiencies in the popular faithfulness evaluation metrics and propose a new evaluation metric. Our evaluation of public and private breast ultrasound datasets (BUSI and FG-US-B) shows that LCE performs well compared to commonly-used explainability methods. Finally, we also validate that LCE can consistently provide reliable explanations for more meaningful fine-grained diagnostic tasks in breast ultrasound.
Abstract:The emerging research shows that lncRNA has crucial research value in a series of complex human diseases. Therefore, the accurate identification of lncRNA-disease associations (LDAs) is very important for the warning and treatment of diseases. However, most of the existing methods have limitations in identifying nonlinear LDAs, and it remains a huge challenge to predict new LDAs. In this paper, a deep learning model based on a heterogeneous network and convolutional neural network (CNN) is proposed for lncRNA-disease association prediction, named HCNNLDA. The heterogeneous network containing the lncRNA, disease, and miRNA nodes, is constructed firstly. The embedding matrix of a lncRNA-disease node pair is constructed according to various biological premises about lncRNAs, diseases, and miRNAs. Then, the low-dimensional feature representation is fully learned by the convolutional neural network. In the end, the XGBoot classifier model is trained to predict the potential LDAs. HCNNLDA obtains a high AUC value of 0.9752 and AUPR of 0.9740 under the 5-fold cross-validation. The experimental results show that the proposed model has better performance than that of several latest prediction models. Meanwhile, the effectiveness of HCNNLDA in identifying novel LDAs is further demonstrated by case studies of three diseases. To sum up, HCNNLDA is a feasible calculation model to predict LDAs.
Abstract:Due to the diversity of assessment requirements in various application scenarios for the IQA task, existing IQA methods struggle to directly adapt to these varied requirements after training. Thus, when facing new requirements, a typical approach is fine-tuning these models on datasets specifically created for those requirements. However, it is time-consuming to establish IQA datasets. In this work, we propose a Prompt-based IQA (PromptIQA) that can directly adapt to new requirements without fine-tuning after training. On one hand, it utilizes a short sequence of Image-Score Pairs (ISP) as prompts for targeted predictions, which significantly reduces the dependency on the data requirements. On the other hand, PromptIQA is trained on a mixed dataset with two proposed data augmentation strategies to learn diverse requirements, thus enabling it to effectively adapt to new requirements. Experiments indicate that the PromptIQA outperforms SOTA methods with higher performance and better generalization. The code will be available.
Abstract:Due to the subjective nature of image quality assessment (IQA), assessing which image has better quality among a sequence of images is more reliable than assigning an absolute mean opinion score for an image. Thus, IQA models are evaluated by global correlation consistency (GCC) metrics like PLCC and SROCC, rather than mean opinion consistency (MOC) metrics like MAE and MSE. However, most existing methods adopt MOC metrics to define their loss functions, due to the infeasible computation of GCC metrics during training. In this work, we construct a novel loss function and network to exploit Global-correlation and Mean-opinion Consistency, forming a GMC-IQA framework. Specifically, we propose a novel GCC loss by defining a pairwise preference-based rank estimation to solve the non-differentiable problem of SROCC and introducing a queue mechanism to reserve previous data to approximate the global results of the whole data. Moreover, we propose a mean-opinion network, which integrates diverse opinion features to alleviate the randomness of weight learning and enhance the model robustness. Experiments indicate that our method outperforms SOTA methods on multiple authentic datasets with higher accuracy and generalization. We also adapt the proposed loss to various networks, which brings better performance and more stable training.
Abstract:Weakly supervised image segmentation approaches in the literature usually achieve high segmentation performance using tight bounding box supervision and decrease the performance greatly when supervised by loose bounding boxes. However, compared with loose bounding box, it is much more difficult to acquire tight bounding box due to its strict requirements on the precise locations of the four sides of the box. To resolve this issue, this study investigates whether it is possible to maintain good segmentation performance when loose bounding boxes are used as supervision. For this purpose, this work extends our previous parallel transformation based multiple instance learning (MIL) for tight bounding box supervision by integrating an MIL strategy based on polar transformation to assist image segmentation. The proposed polar transformation based MIL formulation works for both tight and loose bounding boxes, in which a positive bag is defined as pixels in a polar line of a bounding box with one endpoint located inside the object enclosed by the box and the other endpoint located at one of the four sides of the box. Moreover, a weighted smooth maximum approximation is introduced to incorporate the observation that pixels closer to the origin of the polar transformation are more likely to belong to the object in the box. The proposed approach was evaluated on two public datasets using dice coefficient when bounding boxes at different precision levels were considered in the experiments. The results demonstrate that the proposed approach achieves state-of-the-art performance for bounding boxes at all precision levels and is robust to mild and moderate errors in the loose bounding box annotations. The codes are available at \url{https://github.com/wangjuan313/wsis-beyond-tightBB}.