Abstract:Human pose plays a crucial role in the digital age. While recent works have achieved impressive progress in understanding and generating human poses, they often support only a single modality of control signals and operate in isolation, limiting their application in real-world scenarios. This paper presents UniPose, a framework employing Large Language Models (LLMs) to comprehend, generate, and edit human poses across various modalities, including images, text, and 3D SMPL poses. Specifically, we apply a pose tokenizer to convert 3D poses into discrete pose tokens, enabling seamless integration into the LLM within a unified vocabulary. To further enhance the fine-grained pose perception capabilities, we facilitate UniPose with a mixture of visual encoders, among them a pose-specific visual encoder. Benefiting from a unified learning strategy, UniPose effectively transfers knowledge across different pose-relevant tasks, adapts to unseen tasks, and exhibits extended capabilities. This work serves as the first attempt at building a general-purpose framework for pose comprehension, generation, and editing. Extensive experiments highlight UniPose's competitive and even superior performance across various pose-relevant tasks.
Abstract:The primary goal of out-of-distribution (OOD) detection tasks is to identify inputs with semantic shifts, i.e., if samples from novel classes are absent in the in-distribution (ID) dataset used for training, we should reject these OOD samples rather than misclassifying them into existing ID classes. However, we find the current definition of "semantic shift" is ambiguous, which renders certain OOD testing protocols intractable for the post-hoc OOD detection methods based on a classifier trained on the ID dataset. In this paper, we offer a more precise definition of the Semantic Space and the Covariate Space for the ID distribution, allowing us to theoretically analyze which types of OOD distributions make the detection task intractable. To avoid the flaw in the existing OOD settings, we further define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions for the post-hoc OOD detection methods. Finally, we conduct several experiments to demonstrate the necessity of our definitions and validate the correctness of our theorems.
Abstract:Pre-trained vision-language models (e.g., CLIP) have shown powerful zero-shot transfer capabilities. But they still struggle with domain shifts and typically require labeled data to adapt to downstream tasks, which could be costly. In this work, we aim to leverage unlabeled data that naturally spans multiple domains to enhance the transferability of vision-language models. Under this unsupervised multi-domain setting, we have identified inherent model bias within CLIP, notably in its visual and text encoders. Specifically, we observe that CLIP's visual encoder tends to prioritize encoding domain over discriminative category information, meanwhile its text encoder exhibits a preference for domain-relevant classes. To mitigate this model bias, we propose a training-free and label-free feature calibration method, Unsupervised Multi-domain Feature Calibration (UMFC). UMFC estimates image-level biases from domain-specific features and text-level biases from the direction of domain transition. These biases are subsequently subtracted from original image and text features separately, to render them domain-invariant. We evaluate our method on multiple settings including transductive learning and test-time adaptation. Extensive experiments show that our method outperforms CLIP and performs on par with the state-of-the-arts that need additional annotations or optimization. Our code is available at https://github.com/GIT-LJc/UMFC.
Abstract:Recently, large-scale diffusion models have made impressive progress in text-to-image (T2I) generation. To further equip these T2I models with fine-grained spatial control, approaches like ControlNet introduce an extra network that learns to follow a condition image. However, for every single condition type, ControlNet requires independent training on millions of data pairs with hundreds of GPU hours, which is quite expensive and makes it challenging for ordinary users to explore and develop new types of conditions. To address this problem, we propose the CtrLoRA framework, which trains a Base ControlNet to learn the common knowledge of image-to-image generation from multiple base conditions, along with condition-specific LoRAs to capture distinct characteristics of each condition. Utilizing our pretrained Base ControlNet, users can easily adapt it to new conditions, requiring as few as 1,000 data pairs and less than one hour of single-GPU training to obtain satisfactory results in most scenarios. Moreover, our CtrLoRA reduces the learnable parameters by 90% compared to ControlNet, significantly lowering the threshold to distribute and deploy the model weights. Extensive experiments on various types of conditions demonstrate the efficiency and effectiveness of our method. Codes and model weights will be released at https://github.com/xyfJASON/ctrlora.
Abstract:The significant advancements in visual understanding and instruction following from Multimodal Large Language Models (MLLMs) have opened up more possibilities for broader applications in diverse and universal human-centric scenarios. However, existing image-text data may not support the precise modality alignment and integration of multi-grained information, which is crucial for human-centric visual understanding. In this paper, we introduce HERM-Bench, a benchmark for evaluating the human-centric understanding capabilities of MLLMs. Our work reveals the limitations of existing MLLMs in understanding complex human-centric scenarios. To address these challenges, we present HERM-100K, a comprehensive dataset with multi-level human-centric annotations, aimed at enhancing MLLMs' training. Furthermore, we develop HERM-7B, a MLLM that leverages enhanced training data from HERM-100K. Evaluations on HERM-Bench demonstrate that HERM-7B significantly outperforms existing MLLMs across various human-centric dimensions, reflecting the current inadequacy of data annotations used in MLLM training for human-centric visual understanding. This research emphasizes the importance of specialized datasets and benchmarks in advancing the MLLMs' capabilities for human-centric understanding.
Abstract:Categorization, a core cognitive ability in humans that organizes objects based on common features, is essential to cognitive science as well as computer vision. To evaluate the categorization ability of visual AI models, various proxy tasks on recognition from datasets to open world scenarios have been proposed. Recent development of Large Multimodal Models (LMMs) has demonstrated impressive results in high-level visual tasks, such as visual question answering, video temporal reasoning, etc., utilizing the advanced architectures and large-scale multimodal instruction tuning. Previous researchers have developed holistic benchmarks to measure the high-level visual capability of LMMs, but there is still a lack of pure and in-depth quantitative evaluation of the most fundamental categorization ability. According to the research on human cognitive process, categorization can be seen as including two parts: category learning and category use. Inspired by this, we propose a novel, challenging, and efficient benchmark based on composite blocks, called ComBo, which provides a disentangled evaluation framework and covers the entire categorization process from learning to use. By analyzing the results of multiple evaluation tasks, we find that although LMMs exhibit acceptable generalization ability in learning new categories, there are still gaps compared to humans in many ways, such as fine-grained perception of spatial relationship and abstract category understanding. Through the study of categorization, we can provide inspiration for the further development of LMMs in terms of interpretability and generalization.
Abstract:While text-to-image diffusion models demonstrate impressive generation capabilities, they also exhibit vulnerability to backdoor attacks, which involve the manipulation of model outputs through malicious triggers. In this paper, for the first time, we propose a comprehensive defense method named T2IShield to detect, localize, and mitigate such attacks. Specifically, we find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger. Based on this key insight, we propose two effective backdoor detection methods: Frobenius Norm Threshold Truncation and Covariance Discriminant Analysis. Besides, we introduce a binary-search approach to localize the trigger within a backdoor sample and assess the efficacy of existing concept editing methods in mitigating backdoor attacks. Empirical evaluations on two advanced backdoor attack scenarios show the effectiveness of our proposed defense method. For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$\%$ with low computational cost. Furthermore, T2IShield achieves a localization F1 score of 86.4$\%$ and invalidates 99$\%$ poisoned samples. Codes are released at https://github.com/Robin-WZQ/T2IShield.
Abstract:Currently many benchmarks have been proposed to evaluate the perception ability of the Large Vision-Language Models (LVLMs). However, most benchmarks conduct questions by selecting images from existing datasets, resulting in the potential data leakage. Besides, these benchmarks merely focus on evaluating LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized images and noisy scenarios unexplored. In response to these challenges, we propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs by leveraging synthesis images. Specifically, we leverage Stable Diffusion and design a rule-based method to dynamically generate novel images, questions and the corresponding answers. We consider 51 kinds of image styles and evaluate the perception capability in 20 subtasks. Moreover, we conduct evaluations under 4 scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and 3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the generative paradigm, Dysca serves as a scalable benchmark for easily adding new subtasks and scenarios. A total of 8 advanced open-source LVLMs with 10 checkpoints are evaluated on Dysca, revealing the drawbacks of current LVLMs. The benchmark is released in \url{https://github.com/Benchmark-Dysca/Dysca}.
Abstract:Despite the rapid progress and outstanding performance of Large Vision-Language Models (LVLMs) in recent years, LVLMs have been plagued by the issue of hallucination, i.e., LVLMs tend to generate responses that are inconsistent with the corresponding visual inputs. To evaluate the degree of hallucination in LVLMs, previous works have proposed a series of benchmarks featuring different types of tasks and evaluation metrics. However, we find that the quality of the existing hallucination benchmarks varies, with some suffering from problems, e.g., inconsistent evaluation results under repeated tests, and misalignment with human evaluation. To this end, we propose a Hallucination benchmark Quality Measurement framework (HQM), which leverages various indicators to assess the reliability and validity of existing hallucination benchmarks separately. Specifically, for reliability we explore test-retest reliability and parallel-forms reliability, while for validity we examine criterion validity and coverage of hallucination types. Furthermore, based on the results of our quality measurement, we construct a High-Quality Hallucination Benchmark (HQH) for LVLMs. We conduct an extensive evaluation of over 10 representative LVLMs, including GPT-4o and Gemini-Vision-Pro, to provide an in-depth analysis of the hallucination issues in existing models. Our benchmark is publicly available at https://github.com/HQHBench/HQHBench.
Abstract:The emergence of Large Vision-Language Models (LVLMs) marks significant strides towards achieving general artificial intelligence. However, these advancements are tempered by the outputs that often reflect biases, a concern not yet extensively investigated. Existing benchmarks are not sufficiently comprehensive in evaluating biases due to their limited data scale, single questioning format and narrow sources of bias. To address this problem, we introduce VLBiasBench, a benchmark aimed at evaluating biases in LVLMs comprehensively. In VLBiasBench, we construct a dataset encompassing nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status and two intersectional bias categories (race x gender, and race x social economic status). To create a large-scale dataset, we use Stable Diffusion XL model to generate 46,848 high-quality images, which are combined with different questions to form 128,342 samples. These questions are categorized into open and close ended types, fully considering the sources of bias and comprehensively evaluating the biases of LVLM from multiple perspectives. We subsequently conduct extensive evaluations on 15 open-source models as well as one advanced closed-source model, providing some new insights into the biases revealing from these models. Our benchmark is available at https://github.com/Xiangkui-Cao/VLBiasBench.