Abstract:Nowadays, high-quality images are pursued by both humans for better viewing experience and by machines for more accurate visual analysis. However, images are usually compressed before being consumed, decreasing their quality. It is meaningful to predict the perceptual quality of compressed images for both humans and machines, which guides the optimization for compression. In this paper, we propose a unified approach to address this. Specifically, we create a deep learning-based model to predict Satisfied User Ratio (SUR) and Satisfied Machine Ratio (SMR) of compressed images simultaneously. We first pre-train a feature extractor network on a large-scale SMR-annotated dataset with human perception-related quality labels generated by diverse image quality models, which simulates the acquisition of SUR labels. Then, we propose an MLP-Mixer-based network to predict SUR and SMR by leveraging and fusing the extracted multi-layer features. We introduce a Difference Feature Residual Learning (DFRL) module to learn more discriminative difference features. We further use a Multi-Head Attention Aggregation and Pooling (MHAAP) layer to aggregate difference features and reduce their redundancy. Experimental results indicate that the proposed model significantly outperforms state-of-the-art SUR and SMR prediction methods. Moreover, our joint learning scheme of human and machine perceptual quality prediction tasks is effective at improving the performance of both.
Abstract:Learned lossless image compression has achieved significant advancements in recent years. However, existing methods often rely on training amortized generative models on massive datasets, resulting in sub-optimal probability distribution estimation for specific testing images during encoding process. To address this challenge, we explore the connection between the Minimum Description Length (MDL) principle and Parameter-Efficient Transfer Learning (PETL), leading to the development of a novel content-adaptive approach for learned lossless image compression, dubbed CALLIC. Specifically, we first propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations, termed Masked Gated ConvFormer (MGCF), and pretrain MGCF on training dataset. Cache then Crop Inference (CCI) is proposed to accelerate the coding process. During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT). RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time. Extensive experiments across diverse datasets demonstrate that CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
Abstract:Freeform handwriting authentication verifies a person's identity from their writing style and habits in messy handwriting data. This technique has gained widespread attention in recent years as a valuable tool for various fields, e.g., fraud prevention and cultural heritage protection. However, it still remains a challenging task in reality due to three reasons: (i) severe damage, (ii) complex high-dimensional features, and (iii) lack of supervision. To address these issues, we propose SherlockNet, an energy-oriented two-branch contrastive self-supervised learning framework for robust and fast freeform handwriting authentication. It consists of four stages: (i) pre-processing: converting manuscripts into energy distributions using a novel plug-and-play energy-oriented operator to eliminate the influence of noise; (ii) generalized pre-training: learning general representation through two-branch momentum-based adaptive contrastive learning with the energy distributions, which handles the high-dimensional features and spatial dependencies of handwriting; (iii) personalized fine-tuning: calibrating the learned knowledge using a small amount of labeled data from downstream tasks; and (iv) practical application: identifying individual handwriting from scrambled, missing, or forged data efficiently and conveniently. Considering the practicality, we construct EN-HA, a novel dataset that simulates data forgery and severe damage in real applications. Finally, we conduct extensive experiments on six benchmark datasets including our EN-HA, and the results prove the robustness and efficiency of SherlockNet.
Abstract:Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
Abstract:We have previously shown all understanding or learning are compression, under reasonable assumptions. In principle, better understanding of data should improve data compression. Traditional compression methodologies focus on encoding frequencies or some other computable properties of data. Large language models approximate the uncomputable Solomonoff distribution, opening up a whole new avenue to justify our theory. Under the new uncomputable paradigm, we present LMCompress based on the understanding of data using large models. LMCompress has significantly better lossless compression ratios than all other lossless data compression methods, doubling the compression ratios of JPEG-XL for images, FLAC for audios and H264 for videos, and tripling or quadrupling the compression ratio of bz2 for texts. The better a large model understands the data, the better LMCompress compresses.
Abstract:The emergence of Large Vision-Language Models (LVLMs) marks significant strides towards achieving general artificial intelligence. However, these advancements are tempered by the outputs that often reflect biases, a concern not yet extensively investigated. Existing benchmarks are not sufficiently comprehensive in evaluating biases due to their limited data scale, single questioning format and narrow sources of bias. To address this problem, we introduce VLBiasBench, a benchmark aimed at evaluating biases in LVLMs comprehensively. In VLBiasBench, we construct a dataset encompassing nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status and two intersectional bias categories (race x gender, and race x social economic status). To create a large-scale dataset, we use Stable Diffusion XL model to generate 46,848 high-quality images, which are combined with different questions to form 128,342 samples. These questions are categorized into open and close ended types, fully considering the sources of bias and comprehensively evaluating the biases of LVLM from multiple perspectives. We subsequently conduct extensive evaluations on 15 open-source models as well as one advanced closed-source model, providing some new insights into the biases revealing from these models. Our benchmark is available at https://github.com/Xiangkui-Cao/VLBiasBench.
Abstract:Transformer-based entropy models have gained prominence in recent years due to their superior ability to capture long-range dependencies in probability distribution estimation compared to convolution-based methods. However, previous transformer-based entropy models suffer from a sluggish coding process due to pixel-wise autoregression or duplicated computation during inference. In this paper, we propose a novel transformer-based entropy model called GroupedMixer, which enjoys both faster coding speed and better compression performance than previous transformer-based methods. Specifically, our approach builds upon group-wise autoregression by first partitioning the latent variables into groups along spatial-channel dimensions, and then entropy coding the groups with the proposed transformer-based entropy model. The global causal self-attention is decomposed into more efficient group-wise interactions, implemented using inner-group and cross-group token-mixers. The inner-group token-mixer incorporates contextual elements within a group while the cross-group token-mixer interacts with previously decoded groups. Alternate arrangement of two token-mixers enables global contextual reference. To further expedite the network inference, we introduce context cache optimization to GroupedMixer, which caches attention activation values in cross-group token-mixers and avoids complex and duplicated computation. Experimental results demonstrate that the proposed GroupedMixer yields the state-of-the-art rate-distortion performance with fast compression speed.
Abstract:Temporal Knowledge Graphs (TKGs) incorporate a temporal dimension, allowing for a precise capture of the evolution of knowledge and reflecting the dynamic nature of the real world. Typically, TKGs contain complex geometric structures, with various geometric structures interwoven. However, existing Temporal Knowledge Graph Completion (TKGC) methods either model TKGs in a single space or neglect the heterogeneity of different curvature spaces, thus constraining their capacity to capture these intricate geometric structures. In this paper, we propose a novel Integrating Multi-curvature shared and specific Embedding (IME) model for TKGC tasks. Concretely, IME models TKGs into multi-curvature spaces, including hyperspherical, hyperbolic, and Euclidean spaces. Subsequently, IME incorporates two key properties, namely space-shared property and space-specific property. The space-shared property facilitates the learning of commonalities across different curvature spaces and alleviates the spatial gap caused by the heterogeneous nature of multi-curvature spaces, while the space-specific property captures characteristic features. Meanwhile, IME proposes an Adjustable Multi-curvature Pooling (AMP) approach to effectively retain important information. Furthermore, IME innovatively designs similarity, difference, and structure loss functions to attain the stated objective. Experimental results clearly demonstrate the superior performance of IME over existing state-of-the-art TKGC models.
Abstract:Representing the Neural Radiance Field (NeRF) with the explicit voxel grid (EVG) is a promising direction for improving NeRFs. However, the EVG representation is not efficient for storage and transmission because of the terrific memory cost. Current methods for compressing EVG mainly inherit the methods designed for neural network compression, such as pruning and quantization, which do not take full advantage of the spatial correlation of voxels. Inspired by prosperous digital image compression techniques, this paper proposes SPC-NeRF, a novel framework applying spatial predictive coding in EVG compression. The proposed framework can remove spatial redundancy efficiently for better compression performance.Moreover, we model the bitrate and design a novel form of the loss function, where we can jointly optimize compression ratio and distortion to achieve higher coding efficiency. Extensive experiments demonstrate that our method can achieve 32% bit saving compared to the state-of-the-art method VQRF on multiple representative test datasets, with comparable training time.
Abstract:This paper presents an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network. The proposed method involves decomposing a point cloud into a base point cloud and the interpolation patterns for reconstructing the original point cloud. While the base point cloud can be efficiently compressed using any lossless codec, such as Geometry-based Point Cloud Compression, a distinct strategy is employed for handling the interpolation patterns. Rather than directly compressing the interpolation patterns, a lightweight super-resolution network is utilized to learn this information through overfitting. Subsequently, the network parameter is transmitted to assist in point cloud reconstruction at the decoder side. Notably, our approach differentiates itself from lookup table-based methods, allowing us to obtain more accurate interpolation patterns by accessing a broader range of neighboring voxels at an acceptable computational cost. Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.