Abstract:Nowadays, high-quality images are pursued by both humans for better viewing experience and by machines for more accurate visual analysis. However, images are usually compressed before being consumed, decreasing their quality. It is meaningful to predict the perceptual quality of compressed images for both humans and machines, which guides the optimization for compression. In this paper, we propose a unified approach to address this. Specifically, we create a deep learning-based model to predict Satisfied User Ratio (SUR) and Satisfied Machine Ratio (SMR) of compressed images simultaneously. We first pre-train a feature extractor network on a large-scale SMR-annotated dataset with human perception-related quality labels generated by diverse image quality models, which simulates the acquisition of SUR labels. Then, we propose an MLP-Mixer-based network to predict SUR and SMR by leveraging and fusing the extracted multi-layer features. We introduce a Difference Feature Residual Learning (DFRL) module to learn more discriminative difference features. We further use a Multi-Head Attention Aggregation and Pooling (MHAAP) layer to aggregate difference features and reduce their redundancy. Experimental results indicate that the proposed model significantly outperforms state-of-the-art SUR and SMR prediction methods. Moreover, our joint learning scheme of human and machine perceptual quality prediction tasks is effective at improving the performance of both.
Abstract:Omnidirectional video (ODV) can provide an immersive experience and is widely utilized in the field of virtual reality and augmented reality. However, the restricted capturing devices and transmission bandwidth lead to the low resolution of ODVs. Video super-resolution (VSR) methods are proposed to enhance the resolution of videos, but ODV projection distortions in the application are not well addressed directly applying such methods. To achieve better super-resolution reconstruction quality, we propose a novel Spatio-Temporal Distortion Aware Network (STDAN) oriented to ODV characteristics. Specifically, a spatio-temporal distortion modulation module is introduced to improve spatial ODV projection distortions and exploit the temporal correlation according to intra and inter alignments. Next, we design a multi-frame reconstruction and fusion mechanism to refine the consistency of reconstructed ODV frames. Furthermore, we incorporate latitude-saliency adaptive maps in the loss function to concentrate on important viewpoint regions with higher texture complexity and human-watching interest. In addition, we collect a new ODV-SR dataset with various scenarios. Extensive experimental results demonstrate that the proposed STDAN achieves superior super-resolution performance on ODVs and outperforms state-of-the-art methods.
Abstract:For decades, video compression technology has been a prominent research area. Traditional hybrid video compression framework and end-to-end frameworks continue to explore various intra- and inter-frame reference and prediction strategies based on discrete transforms and deep learning techniques. However, the emerging implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations and obtaining promising performance. INR uses a compact neural network to store video information in network parameters, effectively eliminating spatial and temporal redundancy in the original video. However, in this paper, our exploration and verification reveal that current INR video compression methods do not fully exploit their potential to preserve information. We investigate the potential of enhancing network parameter storage through parameter reuse. By deepening the network, we designed a feasible INR parameter reuse scheme to further improve compression performance. Extensive experimental results show that our method significantly enhances the rate-distortion performance of INR video compression.
Abstract:For decades, video compression technology has been a prominent research area. Traditional hybrid video compression framework and end-to-end frameworks continue to explore various intra- and inter-frame reference and prediction strategies based on discrete transforms and deep learning techniques. However, the emerging implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations and obtaining promising performance. INR uses a compact neural network to store video information in network parameters, effectively eliminating spatial and temporal redundancy in the original video. However, in this paper, our exploration and verification reveal that current INR video compression methods do not fully exploit their potential to preserve information. We investigate the potential of enhancing network parameter storage through parameter reuse. By deepening the network, we designed a feasible INR parameter reuse scheme to further improve compression performance. Extensive experimental results show that our method significantly enhances the rate-distortion performance of INR video compression.
Abstract:Time series forecasting is a crucial task that predicts the future values of variables based on historical data. Time series forecasting techniques have been developing in parallel with the machine learning community, from early statistical learning methods to current deep learning methods. Although existing methods have made significant progress, they still suffer from two challenges. The mathematical theory of mainstream deep learning-based methods does not establish a clear relation between network sizes and fitting capabilities, and these methods often lack interpretability. To this end, we introduce the Kolmogorov-Arnold Network (KAN) into time series forecasting research, which has better mathematical properties and interpretability. First, we propose the Reversible Mixture of KAN experts (RMoK) model, which is a KAN-based model for time series forecasting. RMoK uses a mixture-of-experts structure to assign variables to KAN experts. Then, we compare performance, integration, and speed between RMoK and various baselines on real-world datasets, and the experimental results show that RMoK achieves the best performance in most cases. And we find the relationship between temporal feature weights and data periodicity through visualization, which roughly explains RMoK's mechanism. Thus, we conclude that KAN and KAN-based models (RMoK) are effective in time series forecasting. Code is available at KAN4TSF: https://github.com/2448845600/KAN4TSF.
Abstract:Diffusion Models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts that involve multiple objects, attribute binding, and long descriptions. This paper proposes a framework called \textbf{LLM4GEN}, which enhances the semantic understanding ability of text-to-image diffusion models by leveraging the semantic representation of Large Language Models (LLMs). Through a specially designed Cross-Adapter Module (CAM) that combines the original text features of text-to-image models with LLM features, LLM4GEN can be easily incorporated into various diffusion models as a plug-and-play component and enhances text-to-image generation. Additionally, to facilitate the complex and dense prompts semantic understanding, we develop a LAION-refined dataset, consisting of 1 million (M) text-image pairs with improved image descriptions. We also introduce DensePrompts which contains 7,000 dense prompts to provide a comprehensive evaluation for the text-to-image generation task. With just 10\% of the training data required by recent ELLA, LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 7.69\% and 9.60\% in color on T2I-CompBench, respectively. The extensive experiments on DensePrompts also demonstrate that LLM4GEN surpasses existing state-of-the-art models in terms of sample quality, image-text alignment, and human evaluation. The project website is at: \textcolor{magenta}{\url{https://xiaobul.github.io/LLM4GEN/}}
Abstract:This paper reviews the NTIRE 2024 challenge on image super-resolution ($\times$4), highlighting the solutions proposed and the outcomes obtained. The challenge involves generating corresponding high-resolution (HR) images, magnified by a factor of four, from low-resolution (LR) inputs using prior information. The LR images originate from bicubic downsampling degradation. The aim of the challenge is to obtain designs/solutions with the most advanced SR performance, with no constraints on computational resources (e.g., model size and FLOPs) or training data. The track of this challenge assesses performance with the PSNR metric on the DIV2K testing dataset. The competition attracted 199 registrants, with 20 teams submitting valid entries. This collective endeavour not only pushes the boundaries of performance in single-image SR but also offers a comprehensive overview of current trends in this field.
Abstract:Large-scale vision-language pre-training has shown promising advances on various downstream tasks and achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require a detailed semantics understanding of the text. Although there have been some works on this problem, they do not sufficiently exploit the structural knowledge present in sentences to enhance multi-modal language representations, which leads to poor performance. In this paper, we present an end-to-end framework Structure-CLIP, which integrates latent detailed semantics from the text to enhance fine-grained semantic representations. Specifically, (1) we use scene graphs in order to pay more attention to the detailed semantic learning in the text and fully explore structured knowledge between fine-grained semantics, and (2) we utilize the knowledge-enhanced framework with the help of the scene graph to make full use of representations of structured knowledge. To verify the effectiveness of our proposed method, we pre-trained our models with the aforementioned approach and conduct experiments on different downstream tasks. Numerical results show that Structure-CLIP can often achieve state-of-the-art performance on both VG-Attribution and VG-Relation datasets. Extensive experiments show its components are effective and its predictions are interpretable, which proves that our proposed method can enhance detailed semantic representation well.
Abstract:In this paper, a novel Diffusion-based 3D Pose estimation (D3DP) method with Joint-wise reProjection-based Multi-hypothesis Aggregation (JPMA) is proposed for probabilistic 3D human pose estimation. On the one hand, D3DP generates multiple possible 3D pose hypotheses for a single 2D observation. It gradually diffuses the ground truth 3D poses to a random distribution, and learns a denoiser conditioned on 2D keypoints to recover the uncontaminated 3D poses. The proposed D3DP is compatible with existing 3D pose estimators and supports users to balance efficiency and accuracy during inference through two customizable parameters. On the other hand, JPMA is proposed to assemble multiple hypotheses generated by D3DP into a single 3D pose for practical use. It reprojects 3D pose hypotheses to the 2D camera plane, selects the best hypothesis joint-by-joint based on the reprojection errors, and combines the selected joints into the final pose. The proposed JPMA conducts aggregation at the joint level and makes use of the 2D prior information, both of which have been overlooked by previous approaches. Extensive experiments on Human3.6M and MPI-INF-3DHP datasets show that our method outperforms the state-of-the-art deterministic and probabilistic approaches by 1.5% and 8.9%, respectively. Code is available at https://github.com/paTRICK-swk/D3DP.
Abstract:Video compression has always been a popular research area, where many traditional and deep video compression methods have been proposed. These methods typically rely on signal prediction theory to enhance compression performance by designing high efficient intra and inter prediction strategies and compressing video frames one by one. In this paper, we propose a novel model-based video compression (MVC) framework that regards scenes as the fundamental units for video sequences. Our proposed MVC directly models the intensity variation of the entire video sequence in one scene, seeking non-redundant representations instead of reducing redundancy through spatio-temporal predictions. To achieve this, we employ implicit neural representation (INR) as our basic modeling architecture. To improve the efficiency of video modeling, we first propose context-related spatial positional embedding (CRSPE) and frequency domain supervision (FDS) in spatial context enhancement. For temporal correlation capturing, we design the scene flow constrain mechanism (SFCM) and temporal contrastive loss (TCL). Extensive experimental results demonstrate that our method achieves up to a 20\% bitrate reduction compared to the latest video coding standard H.266 and is more efficient in decoding than existing video coding strategies.