Abstract:Omnidirectional video (ODV) can provide an immersive experience and is widely utilized in the field of virtual reality and augmented reality. However, the restricted capturing devices and transmission bandwidth lead to the low resolution of ODVs. Video super-resolution (VSR) methods are proposed to enhance the resolution of videos, but ODV projection distortions in the application are not well addressed directly applying such methods. To achieve better super-resolution reconstruction quality, we propose a novel Spatio-Temporal Distortion Aware Network (STDAN) oriented to ODV characteristics. Specifically, a spatio-temporal distortion modulation module is introduced to improve spatial ODV projection distortions and exploit the temporal correlation according to intra and inter alignments. Next, we design a multi-frame reconstruction and fusion mechanism to refine the consistency of reconstructed ODV frames. Furthermore, we incorporate latitude-saliency adaptive maps in the loss function to concentrate on important viewpoint regions with higher texture complexity and human-watching interest. In addition, we collect a new ODV-SR dataset with various scenarios. Extensive experimental results demonstrate that the proposed STDAN achieves superior super-resolution performance on ODVs and outperforms state-of-the-art methods.
Abstract:The spiking neural networks (SNNs) that efficiently encode temporal sequences have shown great potential in extracting audio-visual joint feature representations. However, coupling SNNs (binary spike sequences) with transformers (float-point sequences) to jointly explore the temporal-semantic information still facing challenges. In this paper, we introduce a novel Spiking Tucker Fusion Transformer (STFT) for audio-visual zero-shot learning (ZSL). The STFT leverage the temporal and semantic information from different time steps to generate robust representations. The time-step factor (TSF) is introduced to dynamically synthesis the subsequent inference information. To guide the formation of input membrane potentials and reduce the spike noise, we propose a global-local pooling (GLP) which combines the max and average pooling operations. Furthermore, the thresholds of the spiking neurons are dynamically adjusted based on semantic and temporal cues. Integrating the temporal and semantic information extracted by SNNs and Transformers are difficult due to the increased number of parameters in a straightforward bilinear model. To address this, we introduce a temporal-semantic Tucker fusion module, which achieves multi-scale fusion of SNN and Transformer outputs while maintaining full second-order interactions. Our experimental results demonstrate the effectiveness of the proposed approach in achieving state-of-the-art performance in three benchmark datasets. The harmonic mean (HM) improvement of VGGSound, UCF101 and ActivityNet are around 15.4\%, 3.9\%, and 14.9\%, respectively.
Abstract:Efficiently selecting an appropriate spike stream data length to extract precise information is the key to the spike vision tasks. To address this issue, we propose a dynamic timing representation for spike streams. Based on multi-layers architecture, it applies dilated convolutions on temporal dimension to extract features on multi-temporal scales with few parameters. And we design layer attention to dynamically fuse these features. Moreover, we propose an unsupervised learning method for optical flow estimation in a spike-based manner to break the dependence on labeled data. In addition, to verify the robustness, we also build a spike-based synthetic validation dataset for extreme scenarios in autonomous driving, denoted as SSES dataset. It consists of various corner cases. Experiments show that our method can predict optical flow from spike streams in different high-speed scenes, including real scenes. For instance, our method gets $15\%$ and $19\%$ error reduction from the best spike-based work, SCFlow, in $\Delta t=10$ and $\Delta t=20$ respectively which are the same settings as the previous works.
Abstract:Currently, most adverse weather removal tasks are handled independently, such as deraining, desnowing, and dehazing. However, in autonomous driving scenarios, the type, intensity, and mixing degree of the weather are unknown, so the separated task setting cannot deal with these complex conditions well. Besides, the vision applications in autonomous driving often aim at high-level tasks, but existing weather removal methods neglect the connection between performance on perceptual tasks and signal fidelity. To this end, in upstream task, we propose a novel \textbf{Mixture of Weather Experts(MoWE)} Transformer framework to handle complex weather removal in a perception-aware fashion. We design a \textbf{Weather-aware Router} to make the experts targeted more relevant to weather types while without the need for weather type labels during inference. To handle diverse weather conditions, we propose \textbf{Multi-scale Experts} to fuse information among neighbor tokens. In downstream task, we propose a \textbf{Label-free Perception-aware Metric} to measure whether the outputs of image processing models are suitable for high level perception tasks without the demand for semantic labels. We collect a syntactic dataset \textbf{MAW-Sim} towards autonomous driving scenarios to benchmark the multiple weather removal performance of existing methods. Our MoWE achieves SOTA performance in upstream task on the proposed dataset and two public datasets, i.e. All-Weather and Rain/Fog-Cityscapes, and also have better perceptual results in downstream segmentation task compared to other methods. Our codes and datasets will be released after acceptance.
Abstract:SpikeCV is a new open-source computer vision platform for the spike camera, which is a neuromorphic visual sensor that has developed rapidly in recent years. In the spike camera, each pixel position directly accumulates the light intensity and asynchronously fires spikes. The output binary spikes can reach a frequency of 40,000 Hz. As a new type of visual expression, spike sequence has high spatiotemporal completeness and preserves the continuous visual information of the external world. Taking advantage of the low latency and high dynamic range of the spike camera, many spike-based algorithms have made significant progress, such as high-quality imaging and ultra-high-speed target detection. To build up a community ecology for the spike vision to facilitate more users to take advantage of the spike camera, SpikeCV provides a variety of ultra-high-speed scene datasets, hardware interfaces, and an easy-to-use modules library. SpikeCV focuses on encapsulation for spike data, standardization for dataset interfaces, modularization for vision tasks, and real-time applications for challenging scenes. With the advent of the open-source Python ecosystem, modules of SpikeCV can be used as a Python library to fulfilled most of the numerical analysis needs of researchers. We demonstrate the efficiency of the SpikeCV on offline inference and real-time applications. The project repository address are \url{https://openi.pcl.ac.cn/Cordium/SpikeCV} and \url{https://github.com/Zyj061/SpikeCV
Abstract:Hyperspectral imaging plays a pivotal role in a wide range of applications, like remote sensing, medicine, and cytology. By acquiring 3D hyperspectral images (HSIs) via 2D sensors, the coded aperture snapshot spectral imaging (CASSI) has achieved great success due to its hardware-friendly implementation and fast imaging speed. However, for some less spectrally sparse scenes, single snapshot and unreasonable coded aperture design tend to make HSI recovery more ill-posed and yield poor spatial and spectral fidelity. In this paper, we propose a novel Progressive Content-Aware CASSI framework, dubbed PCA-CASSI, which captures HSIs with multiple optimized content-aware coded apertures and fuses all the snapshots for reconstruction progressively. Simultaneously, by mapping the Range-Null space Decomposition (RND) into a deep network with several phases, an RND-HRNet is proposed for HSI recovery. Each recovery phase can fully exploit the hidden physical information in the coded apertures via explicit $\mathcal{R}$$-$$\mathcal{N}$ decomposition and explore the spatial-spectral correlation by dual transformer blocks. Our method is validated to surpass other state-of-the-art methods on both multiple- and single-shot HSI imaging tasks by large margins.
Abstract:In digital cameras, we find a major limitation: the image and video form inherited from a film camera obstructs it from capturing the rapidly changing photonic world. Here, we present vidar, a bit sequence array where each bit represents whether the accumulation of photons has reached a threshold, to record and reconstruct the scene radiance at any moment. By employing only consumer-level CMOS sensors and integrated circuits, we have developed a vidar camera that is 1,000x faster than conventional cameras. By treating vidar as spike trains in biological vision, we have further developed a spiking neural network-based machine vision system that combines the speed of the machine and the mechanism of biological vision, achieving high-speed object detection and tracking 1,000x faster than human vision. We demonstrate the utility of the vidar camera and the super vision system in an assistant referee and target pointing system. Our study is expected to fundamentally revolutionize the image and video concepts and related industries, including photography, movies, and visual media, and to unseal a new spiking neural network-enabled speed-free machine vision era.
Abstract:Medical image segmentation has been widely recognized as a pivot procedure for clinical diagnosis, analysis, and treatment planning. However, the laborious and expensive annotation process lags down the speed of further advances. Contrastive learning-based weight pre-training provides an alternative by leveraging unlabeled data to learn a good representation. In this paper, we investigate how contrastive learning benefits the general supervised medical segmentation tasks. To this end, patch-dragsaw contrastive regularization (PDCR) is proposed to perform patch-level tugging and repulsing with the extent controlled by a continuous affinity score. And a new structure dubbed uncertainty-aware feature selection block (UAFS) is designed to perform the feature selection process, which can handle the learning target shift caused by minority features with high uncertainty. By plugging the proposed 2 modules into the existing segmentation architecture, we achieve state-of-the-art results across 8 public datasets from 6 domains. Newly designed modules further decrease the amount of training data to a quarter while achieving comparable, if not better, performances. From this perspective, we take the opposite direction of the original self/un-supervised contrastive learning by further excavating information contained within the label.
Abstract:Hyperspectral imaging is an essential imaging modality for a wide range of applications, especially in remote sensing, agriculture, and medicine. Inspired by existing hyperspectral cameras that are either slow, expensive, or bulky, reconstructing hyperspectral images (HSIs) from a low-budget snapshot measurement has drawn wide attention. By mapping a truncated numerical optimization algorithm into a network with a fixed number of phases, recent deep unfolding networks (DUNs) for spectral snapshot compressive sensing (SCI) have achieved remarkable success. However, DUNs are far from reaching the scope of industrial applications limited by the lack of cross-phase feature interaction and adaptive parameter adjustment. In this paper, we propose a novel Hyperspectral Explicable Reconstruction and Optimal Sampling deep Network for SCI, dubbed HerosNet, which includes several phases under the ISTA-unfolding framework. Each phase can flexibly simulate the sensing matrix and contextually adjust the step size in the gradient descent step, and hierarchically fuse and interact the hidden states of previous phases to effectively recover current HSI frames in the proximal mapping step. Simultaneously, a hardware-friendly optimal binary mask is learned end-to-end to further improve the reconstruction performance. Finally, our HerosNet is validated to outperform the state-of-the-art methods on both simulation and real datasets by large margins.
Abstract:As a bio-inspired sensor with high temporal resolution, Spiking camera has an enormous potential in real applications, especially for motion estimation in high-speed scenes. Optical flow estimation has achieved remarkable success in image-based and event-based vision, but % existing methods cannot be directly applied in spike stream from spiking camera. conventional optical flow algorithms are not well matched to the spike stream data. This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera. Importantly, we introduce an proper input representation of a given spike stream, which is fed into SCFlow as the sole input. We introduce the \textit{first} spiking camera simulator (SPCS). Furthermore, based on SPCS, we first propose two optical flow datasets for spiking camera (SPIkingly Flying Things and Photo-realistic High-speed Motion, denoted as SPIFT and PHM respectively) corresponding to random high-speed and well-designed scenes. Empirically, we show that the SCFlow can predict optical flow from spike stream in different high-speed scenes, and express superiority to existing methods on the datasets. \textit{All codes and constructed datasets will be released after publication}.