Abstract:Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
Abstract:Low technology and eHealth literacy among older adults in retirement communities hinder engagement with digital tools. To address this, we designed an LLM-powered chatbot prototype using a human-centered approach for a local retirement community. Through interviews and persona development, we prioritized accessibility and dual functionality: simplifying internal information retrieval and improving technology and eHealth literacy. A pilot trial with residents demonstrated high satisfaction and ease of use, but also identified areas for further improvement. Based on the feedback, we refined the chatbot using GPT-3.5 Turbo and Streamlit. The chatbot employs tailored prompt engineering to deliver concise responses. Accessible features like adjustable font size, interface theme and personalized follow-up responses were implemented. Future steps include enabling voice-to-text function and longitudinal intervention studies. Together, our results highlight the potential of LLM-driven chatbots to empower older adults through accessible, personalized interactions, bridging literacy gaps in retirement communities.
Abstract:Conditional image synthesis is a crucial task with broad applications, such as artistic creation and virtual reality. However, current generative methods are often task-oriented with a narrow scope, handling a restricted condition with constrained applicability. In this paper, we propose a novel approach that treats conditional image synthesis as the modular combination of diverse fundamental condition units. Specifically, we divide conditions into three primary units: text, layout, and drag. To enable effective control over these conditions, we design a dedicated alignment module for each. For the text condition, we introduce a Dense Concept Alignment (DCA) module, which achieves dense visual-text alignment by drawing on diverse textual concepts. For the layout condition, we propose a Dense Geometry Alignment (DGA) module to enforce comprehensive geometric constraints that preserve the spatial configuration. For the drag condition, we introduce a Dense Motion Alignment (DMA) module to apply multi-level motion regularization, ensuring that each pixel follows its desired trajectory without visual artifacts. By flexibly inserting and combining these alignment modules, our framework enhances the model's adaptability to diverse conditional generation tasks and greatly expands its application range. Extensive experiments demonstrate the superior performance of our framework across a variety of conditions, including textual description, segmentation mask (bounding box), drag manipulation, and their combinations. Code is available at https://github.com/ZixuanWang0525/DADG.
Abstract:Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings, presenting opportunities for automated detection to identify patients. This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts. We compared general and mental health-specific transformer models (BERT/RoBERTa), embedding-based methods (SentenceBERT/LLaMA), and large language model prompting strategies (zero-shot/few-shot/chain-of-thought) using the DAIC-WOZ dataset. Domain-specific models significantly outperformed general models (Mental-RoBERTa F1=0.643 vs. RoBERTa-base 0.485). LLaMA embeddings with neural networks achieved the highest performance (F1=0.700). Zero-shot prompting using DSM-5 criteria yielded competitive results without training data (F1=0.657). Performance varied significantly across symptom severity and comorbidity status, with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings highlight the potential of domain-adapted embeddings and LLMs for scalable screening while underscoring the need for improved detection of nuanced presentations and offering insights for developing clinically viable AI tools for PTSD assessment.
Abstract:Large language models (LLMs) and Vision language models (VLMs) have been able to perform various forms of reasoning tasks in a wide range of scenarios, but are they truly engaging in task abstraction and rule-based reasoning beyond mere memorization and pattern matching? To answer this question, we propose a novel experimental approach, Misleading Fine-Tuning (MisFT), to examine whether LLMs/VLMs perform abstract reasoning by altering their original understanding of fundamental rules. In particular, by constructing a dataset with math expressions that contradict correct operation principles, we fine-tune the model to learn those contradictory rules and assess its generalization ability on different test domains. Through a series of experiments, we find that current LLMs/VLMs are capable of effectively applying contradictory rules to solve practical math word problems and math expressions represented by images, implying the presence of an internal mechanism that abstracts before reasoning.
Abstract:Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
Abstract:Accurate quantification of both aleatoric and epistemic uncertainties is essential when deploying Graph Neural Networks (GNNs) in high-stakes applications such as drug discovery and financial fraud detection, where reliable predictions are critical. Although Evidential Deep Learning (EDL) efficiently quantifies uncertainty using a Dirichlet distribution over predictive probabilities, existing EDL-based GNN (EGNN) models require modifications to the network architecture and retraining, failing to take advantage of pre-trained models. We propose a plug-and-play framework for uncertainty quantification in GNNs that works with pre-trained models without the need for retraining. Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations, allowing efficient integration with various GNN architectures. We further introduce evidence-based regularization techniques, referred to as EPN-reg, to enhance the estimation of epistemic uncertainty with theoretical justifications. Extensive experiments demonstrate that the proposed EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
Abstract:Humans develop world models that capture the underlying generation process of data. Whether neural networks can learn similar world models remains an open problem. In this work, we provide the first theoretical results for this problem, showing that in a multi-task setting, models with a low-degree bias provably recover latent data-generating variables under mild assumptions -- even if proxy tasks involve complex, non-linear functions of the latents. However, such recovery is also sensitive to model architecture. Our analysis leverages Boolean models of task solutions via the Fourier-Walsh transform and introduces new techniques for analyzing invertible Boolean transforms, which may be of independent interest. We illustrate the algorithmic implications of our results and connect them to related research areas, including self-supervised learning, out-of-distribution generalization, and the linear representation hypothesis in large language models.
Abstract:Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in $N$ independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be ${\it misaligned}$ with pass@N in that pass@N accuracy ${\it decreases}$ with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
Abstract:Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present \texttt{BFS-Prover}, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. \texttt{BFS-Prover} achieves a score of $71.31$ on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.