Abstract:Currently, portable electronic devices are becoming more and more popular. For lightweight considerations, their fingerprint recognition modules usually use limited-size sensors. However, partial fingerprints have few matchable features, especially when there are differences in finger pressing posture or image quality, which makes partial fingerprint verification challenging. Most existing methods regard fingerprint position rectification and identity verification as independent tasks, ignoring the coupling relationship between them -- relative pose estimation typically relies on paired features as anchors, and authentication accuracy tends to improve with more precise pose alignment. Consequently, in this paper we propose a method that jointly estimates identity verification and relative pose for partial fingerprints, aiming to leverage their inherent correlation to improve each other. To achieve this, we propose a multi-task CNN (Convolutional Neural Network)-Transformer hybrid network, and design a pre-training task to enhance the feature extraction capability. Experiments on multiple public datasets (NIST SD14, FVC2002 DB1A & DB3A, FVC2004 DB1A & DB2A, FVC2006 DB1A) and an in-house dataset show that our method achieves state-of-the-art performance in both partial fingerprint verification and relative pose estimation, while being more efficient than previous methods.
Abstract:Latent fingerprint matching is a daunting task, primarily due to the poor quality of latent fingerprints. In this study, we propose a deep-learning based dense minutia descriptor (DMD) for latent fingerprint matching. A DMD is obtained by extracting the fingerprint patch aligned by its central minutia, capturing detailed minutia information and texture information. Our dense descriptor takes the form of a three-dimensional representation, with two dimensions associated with the original image plane and the other dimension representing the abstract features. Additionally, the extraction process outputs the fingerprint segmentation map, ensuring that the descriptor is only valid in the foreground region. The matching between two descriptors occurs in their overlapping regions, with a score normalization strategy to reduce the impact brought by the differences outside the valid area. Our descriptor achieves state-of-the-art performance on several latent fingerprint datasets. Overall, our DMD is more representative and interpretable compared to previous methods.
Abstract:Skin distortion is a long standing challenge in fingerprint matching, which causes false non-matches. Previous studies have shown that the recognition rate can be improved by estimating the distortion field from a distorted fingerprint and then rectifying it into a normal fingerprint. However, existing rectification methods are based on principal component representation of distortion fields, which is not accurate and are very sensitive to finger pose. In this paper, we propose a rectification method where a self-reference based network is utilized to directly estimate the dense distortion field of distorted fingerprint instead of its low dimensional representation. This method can output accurate distortion fields of distorted fingerprints with various finger poses. Considering the limited number and variety of distorted fingerprints in the existing public dataset, we collected more distorted fingerprints with diverse finger poses and distortion patterns as a new database. Experimental results demonstrate that our proposed method achieves the state-of-the-art rectification performance in terms of distortion field estimation and rectified fingerprint matching.
Abstract:Skin distortion is a long standing challenge in fingerprint matching, which causes false non-matches. Previous studies have shown that the recognition rate can be improved by estimating the distortion field from a distorted fingerprint and then rectifying it into a normal fingerprint. However, existing rectification methods are based on principal component representation of distortion fields, which is not accurate and are very sensitive to finger pose. In this paper, we propose a rectification method where a self-reference based network is utilized to directly estimate the dense distortion field of distorted fingerprint instead of its low dimensional representation. This method can output accurate distortion fields of distorted fingerprints with various finger poses and distortion patterns. We conducted experiments on FVC2004 DB1\_A, expanded Tsinghua Distorted Fingerprint database (with additional distorted fingerprints in diverse finger poses and distortion patterns) and a latent fingerprint database. Experimental results demonstrate that our proposed method achieves the state-of-the-art rectification performance in terms of distortion field estimation and rectified fingerprint matching.
Abstract:Fingerprint dense registration aims to finely align fingerprint pairs at the pixel level, thereby reducing intra-class differences caused by distortion. Unfortunately, traditional methods exhibited subpar performance when dealing with low-quality fingerprints while suffering from slow inference speed. Although deep learning based approaches shows significant improvement in these aspects, their registration accuracy is still unsatisfactory. In this paper, we propose a Phase-aggregated Dual-branch Registration Network (PDRNet) to aggregate the advantages of both types of methods. A dual-branch structure with multi-stage interactions is introduced between correlation information at high resolution and texture feature at low resolution, to perceive local fine differences while ensuring global stability. Extensive experiments are conducted on more comprehensive databases compared to previous works. Experimental results demonstrate that our method reaches the state-of-the-art registration performance in terms of accuracy and robustness, while maintaining considerable competitiveness in efficiency.
Abstract:In order to make 3D fingerprints compatible with traditional 2D flat fingerprints, a common practice is to unfold the 3D fingerprint into a 2D rolled fingerprint, which is then matched with the flat fingerprints by traditional 2D fingerprint recognition algorithms. The problem with this method is that there may be large elastic deformation between the unfolded rolled fingerprint and flat fingerprint, which affects the recognition rate. In this paper, we propose a pose-specific 3D fingerprint unfolding algorithm to unfold the 3D fingerprint using the same pose as the flat fingerprint. Our experiments show that the proposed unfolding algorithm improves the compatibility between 3D fingerprint and flat fingerprint and thus leads to higher genuine matching scores.