Abstract:Bidirectional privacy-preservation federated learning is crucial as both local gradients and the global model may leak privacy. However, only a few works attempt to achieve it, and they often face challenges such as excessive communication and computational overheads, or significant degradation of model accuracy, which hinders their practical applications. In this paper, we design an efficient and high-accuracy bidirectional privacy-preserving scheme for federated learning to complete secure model training and secure aggregation. To efficiently achieve bidirectional privacy, we design an efficient and accuracy-lossless model perturbation method on the server side (called $\mathbf{MP\_Server}$) that can be combined with local differential privacy (LDP) to prevent clients from accessing the model, while ensuring that the local gradients obtained on the server side satisfy LDP. Furthermore, to ensure model accuracy, we customize a distributed differential privacy mechanism on the client side (called $\mathbf{DDP\_Client}$). When combined with $\mathbf{MP\_Server}$, it ensures LDP of the local gradients, while ensuring that the aggregated result matches the accuracy of central differential privacy (CDP). Extensive experiments demonstrate that our scheme significantly outperforms state-of-the-art bidirectional privacy-preservation baselines (SOTAs) in terms of computational cost, model accuracy, and defense ability against privacy attacks. Particularly, given target accuracy, the training time of SOTAs is approximately $200$ times, or even over $1000$ times, longer than that of our scheme. When the privacy budget is set relatively small, our scheme incurs less than $6\%$ accuracy loss compared to the privacy-ignoring method, while SOTAs suffer up to $20\%$ accuracy loss. Experimental results also show that the defense capability of our scheme outperforms than SOTAs.
Abstract:Softmax Loss (SL) is widely applied in recommender systems (RS) and has demonstrated effectiveness. This work analyzes SL from a pairwise perspective, revealing two significant limitations: 1) the relationship between SL and conventional ranking metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false negative instances. Our analysis indicates that these limitations are primarily due to the use of the exponential function. To address these issues, this work extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL), which replaces the exponential function in SL with other appropriate activation functions. While the revision is minimal, we highlight three merits of PSL: 1) it serves as a tighter surrogate for DCG with suitable activation functions; 2) it better balances data contributions; and 3) it acts as a specific BPR loss enhanced by Distributionally Robust Optimization (DRO). We further validate the effectiveness and robustness of PSL through empirical experiments. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.
Abstract:Predicting pedestrian behavior is challenging yet crucial for applications such as autonomous driving and smart city. Recent deep learning models have achieved remarkable performance in making accurate predictions, but they fail to provide explanations of their inner workings. One reason for this problem is the multi-modal inputs. To bridge this gap, we present Sparse Prototype Network (SPN), an explainable method designed to simultaneously predict a pedestrian's future action, trajectory, and pose. SPN leverages an intermediate prototype bottleneck layer to provide sample-based explanations for its predictions. The prototypes are modality-independent, meaning that they can correspond to any modality from the input. Therefore, SPN can extend to arbitrary combinations of modalities. Regularized by mono-semanticity and clustering constraints, the prototypes learn consistent and human-understandable features and achieve state-of-the-art performance on action, trajectory and pose prediction on TITAN and PIE. Finally, we propose a metric named Top-K Mono-semanticity Scale to quantitatively evaluate the explainability. Qualitative results show the positive correlation between sparsity and explainability. Code available at https://github.com/Equinoxxxxx/SPN.
Abstract:Dynamic Graph Neural Networks (DyGNNs) have garnered increasing research attention for learning representations on evolving graphs. Despite their effectiveness, the limited expressive power of existing DyGNNs hinders them from capturing important evolving patterns of dynamic graphs. Although some works attempt to enhance expressive capability with heuristic features, there remains a lack of DyGNN frameworks with provable and quantifiable high-order expressive power. To address this research gap, we firstly propose the k-dimensional Dynamic WL tests (k-DWL) as the referencing algorithms to quantify the expressive power of DyGNNs. We demonstrate that the expressive power of existing DyGNNs is upper bounded by the 1-DWL test. To enhance the expressive power, we propose Dynamic Graph Neural Network with High-order expressive power (HopeDGN), which updates the representation of central node pair by aggregating the interaction history with neighboring node pairs. Our theoretical results demonstrate that HopeDGN can achieve expressive power equivalent to the 2-DWL test. We then present a Transformer-based implementation for the local variant of HopeDGN. Experimental results show that HopeDGN achieved performance improvements of up to 3.12%, demonstrating the effectiveness of HopeDGN.
Abstract:Pedestrian action prediction is of great significance for many applications such as autonomous driving. However, state-of-the-art methods lack explainability to make trustworthy predictions. In this paper, a novel framework called MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples. Previous concept-based methods have limitations including: 1) they cannot directly apply to multi-modal cases; 2) they lack locality to attend to details in the inputs; 3) they suffer from mode collapse. These limitations are tackled accordingly through the following approaches: 1) a linear aggregator to integrate the activation results of the concepts into predictions, which associates concepts of different modalities and provides ante-hoc explanations of the relevance between the concepts and the predictions; 2) a channel-wise recalibration module that attends to local spatiotemporal regions, which enables the concepts with locality; 3) a feature regularization loss that encourages the concepts to learn diverse patterns. MulCPred is evaluated on multiple datasets and tasks. Both qualitative and quantitative results demonstrate that MulCPred is promising in improving the explainability of pedestrian action prediction without obvious performance degradation. Furthermore, by removing unrecognizable concepts from MulCPred, the cross-dataset prediction performance is improved, indicating the feasibility of further generalizability of MulCPred.
Abstract:Sequential recommendation systems fundamentally rely on users' historical interaction sequences, which are often contaminated by noisy interactions. Identifying these noisy interactions accurately without additional information is particularly difficult due to the lack of explicit supervisory signals to denote noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, present a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation introduces notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the task and th inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing the corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods across three datasets and three recommendation backbones.
Abstract:Learning effective representations for Continuous-Time Dynamic Graphs (CTDGs) has garnered significant research interest, largely due to its powerful capabilities in modeling complex interactions between nodes. A fundamental and crucial requirement for representation learning in CTDGs is the appropriate estimation and preservation of proximity. However, due to the sparse and evolving characteristics of CTDGs, the spatial-temporal properties inherent in high-order proximity remain largely unexplored. Despite its importance, this property presents significant challenges due to the computationally intensive nature of personalized interaction intensity estimation and the dynamic attributes of CTDGs. To this end, we propose a novel Correlated Spatial-Temporal Positional encoding that incorporates a parameter-free personalized interaction intensity estimation under the weak assumption of the Poisson Point Process. Building on this, we introduce the Dynamic Graph Transformer with \Correlated Spatial-Temporal Positional Encoding (CorDGT), which efficiently retains the evolving spatial-temporal high-order proximity for effective node representation learning in CTDGs. Extensive experiments on seven small and two large-scale datasets demonstrate the superior performance and scalability of the proposed CorDGT.
Abstract:To mitigate the suboptimal nature of graph structure, Graph Structure Learning (GSL) has emerged as a promising approach to improve graph structure and boost performance in downstream tasks. Despite the proposal of numerous GSL methods, the progresses in this field mostly concentrated on node-level tasks, while graph-level tasks (e.g., graph classification) remain largely unexplored. Notably, applying node-level GSL to graph classification is non-trivial due to the lack of find-grained guidance for intricate structure learning. Inspired by the vital role of subgraph in graph classification, in this paper we explore the potential of subgraph structure learning for graph classification by tackling the challenges of key subgraph selection and structure optimization. We propose a novel Motif-driven Subgraph Structure Learning method for Graph Classification (MOSGSL). Specifically, MOSGSL incorporates a subgraph structure learning module which can adaptively select important subgraphs. A motif-driven structure guidance module is further introduced to capture key subgraph-level structural patterns (motifs) and facilitate personalized structure learning. Extensive experiments demonstrate a significant and consistent improvement over baselines, as well as its flexibility and generalizability for various backbones and learning procedures.
Abstract:With the capacity to capture high-order collaborative signals, Graph Neural Networks (GNNs) have emerged as powerful methods in Recommender Systems (RS). However, their efficacy often hinges on the assumption that training and testing data share the same distribution (a.k.a. IID assumption), and exhibits significant declines under distribution shifts. Distribution shifts commonly arises in RS, often attributed to the dynamic nature of user preferences or ubiquitous biases during data collection in RS. Despite its significance, researches on GNN-based recommendation against distribution shift are still sparse. To bridge this gap, we propose Distributionally Robust GNN (DR-GNN) that incorporates Distributional Robust Optimization (DRO) into the GNN-based recommendation. DR-GNN addresses two core challenges: 1) To enable DRO to cater to graph data intertwined with GNN, we reinterpret GNN as a graph smoothing regularizer, thereby facilitating the nuanced application of DRO; 2) Given the typically sparse nature of recommendation data, which might impede robust optimization, we introduce slight perturbations in the training distribution to expand its support. Notably, while DR-GNN involves complex optimization, it can be implemented easily and efficiently. Our extensive experiments validate the effectiveness of DR-GNN against three typical distribution shifts. The code is available at https://github.com/WANGBohaO-jpg/DR-GNN.
Abstract:The recent advancement of large language models (LLMs) represents a transformational capability at the frontier of artificial intelligence (AI) and machine learning (ML). However, LLMs are generalized models, trained on extensive text corpus, and often struggle to provide context-specific information, particularly in areas requiring specialized knowledge such as wildfire details within the broader context of climate change. For decision-makers and policymakers focused on wildfire resilience and adaptation, it is crucial to obtain responses that are not only precise but also domain-specific, rather than generic. To that end, we developed WildfireGPT, a prototype LLM agent designed to transform user queries into actionable insights on wildfire risks. We enrich WildfireGPT by providing additional context such as climate projections and scientific literature to ensure its information is current, relevant, and scientifically accurate. This enables WildfireGPT to be an effective tool for delivering detailed, user-specific insights on wildfire risks to support a diverse set of end users, including researchers, engineers, urban planners, emergency managers, and infrastructure operators.