Abstract:Graph Neural Networks (GNNs) have become a prominent approach for learning from graph-structured data. However, their effectiveness can be significantly compromised when the graph structure is suboptimal. To address this issue, Graph Structure Learning (GSL) has emerged as a promising technique that refines node connections adaptively. Nevertheless, we identify two key limitations in existing GSL methods: 1) Most methods primarily focus on node similarity to construct relationships, while overlooking the quality of node information. Blindly connecting low-quality nodes and aggregating their ambiguous information can degrade the performance of other nodes. 2) The constructed graph structures are often constrained to be symmetric, which may limit the model's flexibility and effectiveness. To overcome these limitations, we propose an Uncertainty-aware Graph Structure Learning (UnGSL) strategy. UnGSL estimates the uncertainty of node information and utilizes it to adjust the strength of directional connections, where the influence of nodes with high uncertainty is adaptively reduced. Importantly, UnGSL serves as a plug-in module that can be seamlessly integrated into existing GSL methods with minimal additional computational cost. In our experiments, we implement UnGSL into six representative GSL methods, demonstrating consistent performance improvements.
Abstract:In recommender systems, most graph-based methods focus on positive user feedback, while overlooking the valuable negative feedback. Integrating both positive and negative feedback to form a signed graph can lead to a more comprehensive understanding of user preferences. However, the existing efforts to incorporate both types of feedback are sparse and face two main limitations: 1) They process positive and negative feedback separately, which fails to holistically leverage the collaborative information within the signed graph; 2) They rely on MLPs or GNNs for information extraction from negative feedback, which may not be effective. To overcome these limitations, we introduce SIGformer, a new method that employs the transformer architecture to sign-aware graph-based recommendation. SIGformer incorporates two innovative positional encodings that capture the spectral properties and path patterns of the signed graph, enabling the full exploitation of the entire graph. Our extensive experiments across five real-world datasets demonstrate the superiority of SIGformer over state-of-the-art methods. The code is available at https://github.com/StupidThree/SIGformer.