Abstract:Zero-shot generalization across various robots, tasks and environments remains a significant challenge in robotic manipulation. Policy code generation methods use executable code to connect high-level task descriptions and low-level action sequences, leveraging the generalization capabilities of large language models and atomic skill libraries. In this work, we propose Robotic Programmer (RoboPro), a robotic foundation model, enabling the capability of perceiving visual information and following free-form instructions to perform robotic manipulation with policy code in a zero-shot manner. To address low efficiency and high cost in collecting runtime code data for robotic tasks, we devise Video2Code to synthesize executable code from extensive videos in-the-wild with off-the-shelf vision-language model and code-domain large language model. Extensive experiments show that RoboPro achieves the state-of-the-art zero-shot performance on robotic manipulation in both simulators and real-world environments. Specifically, the zero-shot success rate of RoboPro on RLBench surpasses the state-of-the-art model GPT-4o by 11.6%, which is even comparable to a strong supervised training baseline. Furthermore, RoboPro is robust to variations on API formats and skill sets.
Abstract:Multivariate time series data provide a robust framework for future predictions by leveraging information across multiple dimensions, ensuring broad applicability in practical scenarios. However, their high dimensionality and mixing patterns pose significant challenges in establishing an interpretable and explicit mapping between historical and future series, as well as extracting long-range feature dependencies. To address these challenges, we propose a channel-time dual unmixing network for multivariate time series forecasting (named MTS-UNMixer), which decomposes the entire series into critical bases and coefficients across both the time and channel dimensions. This approach establishes a robust sharing mechanism between historical and future series, enabling accurate representation and enhancing physical interpretability. Specifically, MTS-UNMixers represent sequences over time as a mixture of multiple trends and cycles, with the time-correlated representation coefficients shared across both historical and future time periods. In contrast, sequence over channels can be decomposed into multiple tick-wise bases, which characterize the channel correlations and are shared across the whole series. To estimate the shared time-dependent coefficients, a vanilla Mamba network is employed, leveraging its alignment with directional causality. Conversely, a bidirectional Mamba network is utilized to model the shared channel-correlated bases, accommodating noncausal relationships. Experimental results show that MTS-UNMixers significantly outperform existing methods on multiple benchmark datasets. The code is available at https://github.com/ZHU-0108/MTS-UNMixers.
Abstract:Recent research on the 1-bit Large Language Models (LLMs), such as BitNet b1.58, presents a promising direction for reducing the inference cost of LLMs while maintaining their performance. In this work, we introduce BitNet a4.8, enabling 4-bit activations for 1-bit LLMs. BitNet a4.8 employs a hybrid quantization and sparsification strategy to mitigate the quantization errors introduced by the outlier channels. Specifically, we utilize 4-bit activations for inputs to the attention and feed-forward network layers, while sparsifying intermediate states followed with 8-bit quantization. Extensive experiments demonstrate that BitNet a4.8 achieves performance comparable to BitNet b1.58 with equivalent training costs, while being faster in inference with enabling 4-bit (INT4/FP4) kernels. Additionally, BitNet a4.8 activates only 55% of parameters and supports 3-bit KV cache, further enhancing the efficiency of large-scale LLM deployment and inference.
Abstract:Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1.58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption. These developments also enable local LLM deployment across a broad range of devices. In this work, we introduce bitnet.cpp, a tailored software stack designed to unlock the full potential of 1-bit LLMs. Specifically, we develop a set of kernels to support fast and lossless inference of ternary BitNet b1.58 LLMs on CPUs. Extensive experiments demonstrate that bitnet.cpp achieves significant speedups, ranging from 2.37x to 6.17x on x86 CPUs and from 1.37x to 5.07x on ARM CPUs, across various model sizes. The code is available at https://github.com/microsoft/BitNet.
Abstract:Many state-of-the-art RGB-T trackers have achieved remarkable results through modality fusion. However, these trackers often either overlook temporal information or fail to fully utilize it, resulting in an ineffective balance between multi-modal and temporal information. To address this issue, we propose a novel Cross Fusion RGB-T Tracking architecture (CFBT) that ensures the full participation of multiple modalities in tracking while dynamically fusing temporal information. The effectiveness of CFBT relies on three newly designed cross spatio-temporal information fusion modules: Cross Spatio-Temporal Augmentation Fusion (CSTAF), Cross Spatio-Temporal Complementarity Fusion (CSTCF), and Dual-Stream Spatio-Temporal Adapter (DSTA). CSTAF employs a cross-attention mechanism to enhance the feature representation of the template comprehensively. CSTCF utilizes complementary information between different branches to enhance target features and suppress background features. DSTA adopts the adapter concept to adaptively fuse complementary information from multiple branches within the transformer layer, using the RGB modality as a medium. These ingenious fusions of multiple perspectives introduce only less than 0.3\% of the total modal parameters, but they indeed enable an efficient balance between multi-modal and temporal information. Extensive experiments on three popular RGB-T tracking benchmarks demonstrate that our method achieves new state-of-the-art performance.
Abstract:We introduce, Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs). Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference. This is achieved by applying top-K sparsification to the activations and the straight-through-estimator to the training. The key results from this work are, (1) Q-Sparse can achieve results comparable to those of baseline LLMs while being much more efficient at inference time; (2) We present an inference-optimal scaling law for sparsely-activated LLMs; (3) Q-Sparse is effective in different settings, including training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning; (4) Q-Sparse works for both full-precision and 1-bit LLMs (e.g., BitNet b1.58). Particularly, the synergy of BitNet b1.58 and Q-Sparse (can be equipped with MoE) provides the cornerstone and a clear path to revolutionize the efficiency, including cost and energy consumption, of future LLMs.
Abstract:Hyperspectral target detection (HTD) identifies objects of interest from complex backgrounds at the pixel level, playing a vital role in Earth observation. However, HTD faces challenges due to limited prior knowledge and spectral variations, leading to underfitting models and unreliable performance. To address these challenges, this paper proposes an efficient self-supervised HTD method with a pyramid state space model (SSM), named HTD-Mamba, which employs spectrally contrastive learning to distinguish between target and background based on the similarity measurement of intrinsic features. Specifically, to obtain sufficient training samples and leverage spatial contextual information, we propose a spatial-encoded spectral augmentation technique that encodes all surrounding pixels within a patch into a transformed view of the central pixel. Additionally, to explore global band correlations, we divide pixels into continuous group-wise spectral embeddings and introduce Mamba to HTD for the first time to model long-range dependencies of the spectral sequence with linear complexity. Furthermore, to alleviate spectral variation and enhance robust representation, we propose a pyramid SSM as a backbone to capture and fuse multiresolution spectral-wise intrinsic features. Extensive experiments conducted on four public datasets demonstrate that the proposed method outperforms state-of-the-art methods in both quantitative and qualitative evaluations. Code is available at \url{https://github.com/shendb2022/HTD-Mamba}.
Abstract:Multilingual multimodal reasoning is a core component in achieving human-level intelligence. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 8,931 samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in Chinese, English, and German. Using M4U, we conduct extensive evaluations of 21 leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results show that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, suffer performance degradation when prompted with cross-lingual multimodal questions, such as images with key textual information in Chinese while the question is in German. We believe that M4U can serve as a crucial tool for systematically evaluating LMMs based on their multilingual multimodal reasoning capabilities and monitoring their development. The homepage, codes and data are public available.
Abstract:Singing voice conversion is to convert the source sing voice into the target sing voice except for the content. Currently, flow-based models can complete the task of voice conversion, but they struggle to effectively extract latent variables in the more rhythmically rich and emotionally expressive task of singing voice conversion, while also facing issues with low efficiency in speech processing. In this paper, we propose a high-fidelity flow-based model based on multi-decoupling feature constraints, which enhances the capture of vocal details by integrating multiple encoders. We also use iSTFT to enhance the speed of speech processing by replacing some layers of the Vocoder. We compare the synthesized singing voice with other models from multiple dimensions, and our proposed model is highly consistent with the current state-of-the-art, with the demo which is available at \url{https://lazycat1119.github.io/RASVC-demo/}
Abstract:Gaussian Splatting has garnered widespread attention due to its exceptional performance. Consequently, SLAM systems based on Gaussian Splatting have emerged, leveraging its capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure adjustments and scene generalization capabilities. To address these issues, we introduce NGM-SLAM, the first GS-SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We have developed neural implicit submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate gap filling and high-quality scene expression, supporting both monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.