Abstract:The rapid evolution of Large Vision-Language Models (LVLMs) has highlighted the necessity for comprehensive evaluation frameworks that assess these models across diverse dimensions. While existing benchmarks focus on specific aspects such as perceptual abilities, cognitive capabilities, and safety against adversarial attacks, they often lack the breadth and depth required to provide a holistic understanding of LVLMs' strengths and limitations. To address this gap, we introduce REVAL, a comprehensive benchmark designed to evaluate the \textbf{RE}liability and \textbf{VAL}ue of LVLMs. REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability, which assesses truthfulness (\eg, perceptual accuracy and hallucination tendencies) and robustness (\eg, resilience to adversarial attacks, typographic attacks, and image corruption), and Values, which evaluates ethical concerns (\eg, bias and moral understanding), safety issues (\eg, toxicity and jailbreak vulnerabilities), and privacy problems (\eg, privacy awareness and privacy leakage). We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro. Our findings reveal that while current LVLMs excel in perceptual tasks and toxicity avoidance, they exhibit significant vulnerabilities in adversarial scenarios, privacy preservation, and ethical reasoning. These insights underscore critical areas for future improvements, guiding the development of more secure, reliable, and ethically aligned LVLMs. REVAL provides a robust framework for researchers to systematically assess and compare LVLMs, fostering advancements in the field.
Abstract:Face Forgery Detection (FFD), or Deepfake detection, aims to determine whether a digital face is real or fake. Due to different face synthesis algorithms with diverse forgery patterns, FFD models often overfit specific patterns in training datasets, resulting in poor generalization to other unseen forgeries. This severe challenge requires FFD models to possess strong capabilities in representing complex facial features and extracting subtle forgery cues. Although previous FFD models directly employ existing backbones to represent and extract facial forgery cues, the critical role of backbones is often overlooked, particularly as their knowledge and capabilities are insufficient to address FFD challenges, inevitably limiting generalization. Therefore, it is essential to integrate the backbone pre-training configurations and seek practical solutions by revisiting the complete FFD workflow, from backbone pre-training and fine-tuning to inference of discriminant results. Specifically, we analyze the crucial contributions of backbones with different configurations in FFD task and propose leveraging the ViT network with self-supervised learning on real-face datasets to pre-train a backbone, equipping it with superior facial representation capabilities. We then build a competitive backbone fine-tuning framework that strengthens the backbone's ability to extract diverse forgery cues within a competitive learning mechanism. Moreover, we devise a threshold optimization mechanism that utilizes prediction confidence to improve the inference reliability. Comprehensive experiments demonstrate that our FFD model with the elaborate backbone achieves excellent performance in FFD and extra face-related tasks, i.e., presentation attack detection. Code and models are available at https://github.com/zhenglab/FFDBackbone.