Abstract:Zero-shot voice conversion (VC) aims to transform the timbre of a source speaker into any previously unseen target speaker, while preserving the original linguistic content. Despite notable progress, attaining a degree of speaker similarity and naturalness on par with ground truth recordings continues to pose great challenge. In this paper, we propose CTEFM-VC, a zero-shot VC framework that leverages Content-aware Timbre Ensemble modeling and Flow Matching. Specifically, CTEFM-VC disentangles utterances into linguistic content and timbre representations, subsequently utilizing a conditional flow matching model and a vocoder to reconstruct the mel-spectrogram and waveform. To enhance its timbre modeling capability and the naturalness of generated speech, we propose a context-aware timbre ensemble modeling approach that adaptively integrates diverse speaker verification embeddings and enables the joint utilization of linguistic and timbre features through a cross-attention module. Experiments show that our CTEFM-VC system surpasses state-of-the-art VC methods in both speaker similarity and naturalness by at least 18.5% and 7.0%.
Abstract:Quantum Neural Networks (QNNs) combine quantum computing and neural networks, leveraging quantum properties such as superposition and entanglement to improve machine learning models. These quantum characteristics enable QNNs to potentially outperform classical neural networks in tasks such as quantum chemistry simulations, optimization problems, and quantum-enhanced machine learning. However, they also introduce significant challenges in verifying the correctness and reliability of QNNs. To address this, we propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration during testing, focusing on superposition and entanglement. These criteria help detect quantum-specific defects and anomalies. Extensive experiments on benchmark datasets and QNN models validate QCov's effectiveness in identifying quantum-specific defects and guiding fuzz testing, thereby improving QNN robustness and reliability.
Abstract:Zero-shot voice conversion (VC) aims to transform the source speaker timbre into an arbitrary unseen one without altering the original speech content.While recent advancements in zero-shot VC methods have shown remarkable progress, there still remains considerable potential for improvement in terms of improving speaker similarity and speech naturalness.In this paper, we propose Takin-VC, a novel zero-shot VC framework based on jointly hybrid content and memory-augmented context-aware timbre modeling to tackle this challenge. Specifically, an effective hybrid content encoder, guided by neural codec training, that leverages quantized features from pre-trained WavLM and HybridFormer is first presented to extract the linguistic content of the source speech. Subsequently, we introduce an advanced cross-attention-based context-aware timbre modeling approach that learns the fine-grained, semantically associated target timbre features. To further enhance both speaker similarity and real-time performance, we utilize a conditional flow matching model to reconstruct the Mel-spectrogram of the source speech. Additionally, we advocate an efficient memory-augmented module designed to generate high-quality conditional target inputs for the flow matching process, thereby improving the overall performance of the proposed system. Experimental results demonstrate that the proposed Takin-VC method surpasses state-of-the-art zero-shot VC systems, delivering superior performance in terms of both speech naturalness and speaker similarity.
Abstract:With the rapid advancement of generative AI, multimodal deepfakes, which manipulate both audio and visual modalities, have drawn increasing public concern. Currently, deepfake detection has emerged as a crucial strategy in countering these growing threats. However, as a key factor in training and validating deepfake detectors, most existing deepfake datasets primarily focus on the visual modal, and the few that are multimodal employ outdated techniques, and their audio content is limited to a single language, thereby failing to represent the cutting-edge advancements and globalization trends in current deepfake technologies. To address this gap, we propose a novel, multilingual, and multimodal deepfake dataset: PolyGlotFake. It includes content in seven languages, created using a variety of cutting-edge and popular Text-to-Speech, voice cloning, and lip-sync technologies. We conduct comprehensive experiments using state-of-the-art detection methods on PolyGlotFake dataset. These experiments demonstrate the dataset's significant challenges and its practical value in advancing research into multimodal deepfake detection.
Abstract:The continuous evolution of pre-trained speech models has greatly advanced Speech Emotion Recognition (SER). However, there is still potential for enhancement in the performance of these methods. In this paper, we present GMP-ATL (Gender-augmented Multi-scale Pseudo-label Adaptive Transfer Learning), a novel HuBERT-based adaptive transfer learning framework for SER. Specifically, GMP-ATL initially employs the pre-trained HuBERT, implementing multi-task learning and multi-scale k-means clustering to acquire frame-level gender-augmented multi-scale pseudo-labels. Then, to fully leverage both obtained frame-level and utterance-level emotion labels, we incorporate model retraining and fine-tuning methods to further optimize GMP-ATL. Experiments on IEMOCAP show that our GMP-ATL achieves superior recognition performance, with a WAR of 80.0\% and a UAR of 82.0\%, surpassing state-of-the-art unimodal SER methods, while also yielding comparable results with multimodal SER approaches.
Abstract:Missing data imputation poses a paramount challenge when dealing with graph data. Prior works typically are based on feature propagation or graph autoencoders to address this issue. However, these methods usually encounter the over-smoothing issue when dealing with missing data, as the graph neural network (GNN) modules are not explicitly designed for handling missing data. This paper proposes a novel framework, called Dual-Path Generative Adversarial Network (DPGAN), that can deal simultaneously with missing data and avoid over-smoothing problems. The crux of our work is that it admits both global and local representations of the input graph signal, which can capture the long-range dependencies. It is realized via our proposed generator, consisting of two key components, i.e., MLPUNet++ and GraphUNet++. Our generator is trained with a designated discriminator via an adversarial process. In particular, to avoid assessing the entire graph as did in the literature, our discriminator focuses on the local subgraph fidelity, thereby boosting the quality of the local imputation. The subgraph size is adjustable, allowing for control over the intensity of adversarial regularization. Comprehensive experiments across various benchmark datasets substantiate that DPGAN consistently rivals, if not outperforms, existing state-of-the-art imputation algorithms. The code is provided at \url{https://github.com/momoxia/DPGAN}.
Abstract:Neural speech codec has recently gained widespread attention in generative speech modeling domains, like voice conversion, text-to-speech synthesis, etc. However, ensuring high-fidelity audio reconstruction of speech codecs under low bitrate remains an open and challenging issue. In this paper, we propose PromptCodec, a novel end-to-end neural speech codec using feature-aware prompt encoders based on disentangled representation learning. By incorporating prompt encoders to capture representations of additional input prompts, PromptCodec can distribute the speech information requiring processing and enhance its representation capabilities. Moreover, a simple yet effective adaptive feature weighted fusion approach is introduced to integrate features of different encoders. Meanwhile, we propose a novel disentangled representation learning strategy based on structure similarity index measure to optimize PromptCodec's encoders to ensure their efficiency, thereby further improving the performance of PromptCodec. Experiments on LibriTTS demonstrate that our proposed PromptCodec consistently outperforms state-of-the-art neural speech codec models under all different bitrate conditions while achieving superior performance with low bitrates.
Abstract:Visual object tracking plays a critical role in visual-based autonomous systems, as it aims to estimate the position and size of the object of interest within a live video. Despite significant progress made in this field, state-of-the-art (SOTA) trackers often fail when faced with adversarial perturbations in the incoming frames. This can lead to significant robustness and security issues when these trackers are deployed in the real world. To achieve high accuracy on both clean and adversarial data, we propose building a spatial-temporal continuous representation using the semantic text guidance of the object of interest. This novel continuous representation enables us to reconstruct incoming frames to maintain semantic and appearance consistency with the object of interest and its clean counterparts. As a result, our proposed method successfully defends against different SOTA adversarial tracking attacks while maintaining high accuracy on clean data. In particular, our method significantly increases tracking accuracy under adversarial attacks with around 90% relative improvement on UAV123, which is even higher than the accuracy on clean data.
Abstract:Pre-trained code models lead the era of code intelligence. Many models have been designed with impressive performance recently. However, one important problem, data augmentation for code data that automatically helps developers prepare training data lacks study in the field of code learning. In this paper, we introduce a general data augmentation framework, GenCode, to enhance the training of code understanding models. GenCode follows a generation-and-selection paradigm to prepare useful training codes. Specifically, it uses code transformation techniques to generate new code candidates first and then selects important ones as the training data by importance metrics. To evaluate the effectiveness of GenCode with a general importance metric -- loss value, we conduct experiments on four code understanding tasks (e.g., code clone detection) and three pre-trained code models (e.g., CodeT5). Compared to the state-of-the-art (SOTA) code augmentation method, MixCode, GenCode produces code models with 2.92% higher accuracy and 4.90% robustness on average.
Abstract:In recent years, as various realistic face forgery techniques known as DeepFake improves by leaps and bounds,more and more DeepFake detection techniques have been proposed. These methods typically rely on detecting statistical differences between natural (i.e., real) and DeepFakegenerated images in both spatial and frequency domains. In this work, we propose to explicitly minimize the statistical differences to evade state-of-the-art DeepFake detectors. To this end, we propose a statistical consistency attack (StatAttack) against DeepFake detectors, which contains two main parts. First, we select several statistical-sensitive natural degradations (i.e., exposure, blur, and noise) and add them to the fake images in an adversarial way. Second, we find that the statistical differences between natural and DeepFake images are positively associated with the distribution shifting between the two kinds of images, and we propose to use a distribution-aware loss to guide the optimization of different degradations. As a result, the feature distributions of generated adversarial examples is close to the natural images.Furthermore, we extend the StatAttack to a more powerful version, MStatAttack, where we extend the single-layer degradation to multi-layer degradations sequentially and use the loss to tune the combination weights jointly. Comprehensive experimental results on four spatial-based detectors and two frequency-based detectors with four datasets demonstrate the effectiveness of our proposed attack method in both white-box and black-box settings.