Abstract:This paper proposes a novel hybrid model, STGCN-LSTM, to forecast Olympic medal distributions by integrating the spatio-temporal relationships among countries and the long-term dependencies of national performance. The Spatial-Temporal Graph Convolution Network (STGCN) captures geographic and interactive factors-such as coaching exchange and socio-economic links-while the Long Short-Term Memory (LSTM) module models historical trends in medal counts, economic data, and demographics. To address zero-inflated outputs (i.e., the disparity between countries that consistently yield wins and those never having won medals), a Zero-Inflated Compound Poisson (ZICP) framework is incorporated to separate random zeros from structural zeros, providing a clearer view of potential breakthrough performances. Validation includes historical backtracking, policy shock simulations, and causal inference checks, confirming the robustness of the proposed method. Results shed light on the influence of coaching mobility, event specialization, and strategic investment on medal forecasts, offering a data-driven foundation for optimizing sports policies and resource allocation in diverse Olympic contexts.
Abstract:Identifying offensive language is essential for maintaining safety and sustainability in the social media era. Though large language models (LLMs) have demonstrated encouraging potential in social media analytics, they lack thorough evaluation when in offensive language detection, particularly in multilingual environments. We for the first time evaluate multilingual offensive language detection of LLMs in three languages: English, Spanish, and German with three LLMs, GPT-3.5, Flan-T5, and Mistral, in both monolingual and multilingual settings. We further examine the impact of different prompt languages and augmented translation data for the task in non-English contexts. Furthermore, we discuss the impact of the inherent bias in LLMs and the datasets in the mispredictions related to sensitive topics.
Abstract:Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning, achieving human-level performance in various tasks. Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models. While training stronger models is important, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution. Unlike large-scale training, self-evolution may rely on limited data or interactions. Inspired by the columnar organization of the human cerebral cortex, we hypothesize that AI models could develop cognitive abilities and build internal representations through iterative interactions with their environment. To achieve this, models need long-term memory (LTM) to store and manage processed interaction data. LTM supports self-evolution by representing diverse experiences across environments and agents. In this report, we explore AI self-evolution and its potential to enhance models during inference. We examine LTM's role in lifelong learning, allowing models to evolve based on accumulated interactions. We outline the structure of LTM and the systems needed for effective data retention and representation. We also classify approaches for building personalized models with LTM data and show how these models achieve self-evolution through interaction. Using LTM, our multi-agent framework OMNE achieved first place on the GAIA benchmark, demonstrating LTM's potential for AI self-evolution. Finally, we present a roadmap for future research, emphasizing the importance of LTM for advancing AI technology and its practical applications.
Abstract:Modern speaker recognition systems represent utterances by embedding vectors. Conventional embedding vectors are dense and non-structural. In this paper, we propose an ordered binary embedding approach that sorts the dimensions of the embedding vector via a nested dropout and converts the sorted vectors to binary codes via Bernoulli sampling. The resultant ordered binary codes offer some important merits such as hierarchical clustering, reduced memory usage, and fast retrieval. These merits were empirically verified by comprehensive experiments on a speaker identification task with the VoxCeleb and CN-Celeb datasets.