UC Berkeley
Abstract:Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
Abstract:Emergent cognitive abilities in large language models (LLMs) have been widely observed, but their nature and underlying mechanisms remain poorly understood. A growing body of research draws on cognitive science to investigate LLM cognition, but standard methodologies and experimen-tal pipelines have not yet been established. To address this gap we develop CognitivEval, a framework for systematically evaluating the artificial cognitive capabilities of LLMs, with a particular emphasis on robustness in response collection. The key features of CognitivEval include: (i) automatic prompt permutations, and (ii) testing that gathers both generations and model probability estimates. Our experiments demonstrate that these features lead to more robust experimental outcomes. Using CognitivEval, we replicate five classic experiments in cognitive science, illustrating the framework's generalizability across various experimental tasks and obtaining a cognitive profile of several state of the art LLMs. CognitivEval will be released publicly to foster broader collaboration within the cognitive science community.
Abstract:Autonomous robotic wiping is an important task in various industries, ranging from industrial manufacturing to sanitization in healthcare. Deep reinforcement learning (Deep RL) has emerged as a promising algorithm, however, it often suffers from a high demand for repetitive reward engineering. Instead of relying on manual tuning, we first analyze the convergence of quality-critical robotic wiping, which requires both high-quality wiping and fast task completion, to show the poor convergence of the problem and propose a new bounded reward formulation to make the problem feasible. Then, we further improve the learning process by proposing a novel visual-language model (VLM) based curriculum, which actively monitors the progress and suggests hyperparameter tuning. We demonstrate that the combined method can find a desirable wiping policy on surfaces with various curvatures, frictions, and waypoints, which cannot be learned with the baseline formulation. The demo of this project can be found at: https://sites.google.com/view/highqualitywiping.
Abstract:Supervised fine-tuning is a standard method for adapting pre-trained large language models (LLMs) to downstream tasks. Quantization has been recently studied as a post-training technique for efficient LLM deployment. To obtain quantized fine-tuned LLMs, conventional pipelines would first fine-tune the pre-trained models, followed by post-training quantization. This often yields suboptimal performance as it fails to leverage the synergy between fine-tuning and quantization. To effectively realize low-bit quantization of weights, activations, and KV caches in LLMs, we propose an algorithm named Rotated Straight-Through-Estimator (RoSTE), which combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy that identifies an effective rotation configuration to reduce activation outliers. We provide theoretical insights on RoSTE by analyzing its prediction error when applied to an overparameterized least square quantized training problem. Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration. Experiments on Pythia and Llama models of different sizes demonstrate the effectiveness of RoSTE. Compared to existing post-SFT quantization baselines, our method consistently achieves superior performances across various tasks and different LLM architectures.
Abstract:Writing is a cognitively demanding task involving continuous decision-making, heavy use of working memory, and frequent switching between multiple activities. Scholarly writing is particularly complex as it requires authors to coordinate many pieces of multiform knowledge. To fully understand writers' cognitive thought process, one should fully decode the end-to-end writing data (from individual ideas to final manuscript) and understand their complex cognitive mechanisms in scholarly writing. We introduce ScholaWrite dataset, the first-of-its-kind keystroke logs of an end-to-end scholarly writing process for complete manuscripts, with thorough annotations of cognitive writing intentions behind each keystroke. Our dataset includes LaTeX-based keystroke data from five preprints with nearly 62K total text changes and annotations across 4 months of paper writing. ScholaWrite shows promising usability and applications (e.g., iterative self-writing) for the future development of AI writing assistants for academic research, which necessitate complex methods beyond LLM prompting. Our experiments clearly demonstrated the importance of collection of end-to-end writing data, rather than the final manuscript, for the development of future writing assistants to support the cognitive thinking process of scientists. Our de-identified dataset, demo, and code repository are available on our project page.
Abstract:Multimodal learning plays a crucial role in enabling machine learning models to fuse and utilize diverse data sources, such as text, images, and audio, to support a variety of downstream tasks. A unified representation across various modalities is particularly important for improving efficiency and performance. Recent binding methods, such as ImageBind (Girdhar et al., 2023), typically use a fixed anchor modality to align multimodal data in the anchor modal embedding space. In this paper, we mathematically analyze the fixed anchor binding methods and uncover notable limitations: (1) over-reliance on the choice of the anchor modality, (2) failure to capture intra-modal information, and (3) failure to account for inter-modal correlation among non-anchored modalities. To address these limitations, we propose CentroBind, a simple yet powerful approach that eliminates the need for a fixed anchor; instead, it employs dynamically adjustable centroid-based anchors generated from all available modalities, resulting in a balanced and rich representation space. We theoretically demonstrate that our method captures three crucial properties of multimodal learning: intra-modal learning, inter-modal learning, and multimodal alignment, while also constructing a robust unified representation across all modalities. Our experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed method, showing that dynamic anchor methods outperform all fixed anchor binding methods as the former captures more nuanced multimodal interactions.
Abstract:Prevalent ungrammatical expressions and disfluencies in spontaneous speech from second language (L2) learners pose unique challenges to Automatic Speech Recognition (ASR) systems. However, few datasets are tailored to L2 learner speech. We publicly release LearnerVoice, a dataset consisting of 50.04 hours of audio and transcriptions of L2 learners' spontaneous speech. Our linguistic analysis reveals that transcriptions in our dataset contain L2S (L2 learner's Spontaneous speech) features, consisting of ungrammatical expressions and disfluencies (e.g., filler words, word repetitions, self-repairs, false starts), significantly more than native speech datasets. Fine-tuning whisper-small.en with LearnerVoice achieves a WER of 10.26%, 44.2% lower than vanilla whisper-small.en. Furthermore, our qualitative analysis indicates that 54.2% of errors from the vanilla model on LearnerVoice are attributable to L2S features, with 48.1% of them being reduced in the fine-tuned model.
Abstract:Large Language Models (LLMs) have assisted humans in several writing tasks, including text revision and story generation. However, their effectiveness in supporting domain-specific writing, particularly in business contexts, is relatively less explored. Our formative study with industry professionals revealed the limitations in current LLMs' understanding of the nuances in such domain-specific writing. To address this gap, we propose an approach of human-AI collaborative taxonomy development to perform as a guideline for domain-specific writing assistants. This method integrates iterative feedback from domain experts and multiple interactions between these experts and LLMs to refine the taxonomy. Through larger-scale experiments, we aim to validate this methodology and thus improve LLM-powered writing assistance, tailoring it to meet the unique requirements of different stakeholder needs.
Abstract:Aligning Video Large Multimodal Models (VLMMs) face challenges such as modality misalignment and verbose responses. Although iterative approaches such as self-rewarding or iterative direct preference optimization (DPO) recently showed a significant improvement in language model alignment, particularly on reasoning tasks, self-aligned models applied to large video-language models often result in lengthy and irrelevant responses. To address these challenges, we propose a novel method that employs self-retrospection to enhance both response generation and preference modeling, and call iterative self-retrospective judgment (i-SRT). By revisiting and evaluating already generated content and preference in loop, i-SRT improves the alignment between textual and visual modalities, reduce verbosity, and enhances content relevance. Our empirical evaluations across diverse video question answering benchmarks demonstrate that i-SRT significantly outperforms prior arts. We are committed to opensourcing our code, models, and datasets to encourage further investigation.
Abstract:Aligning human preference and value is an important requirement for building contemporary foundation models and embodied AI. However, popular approaches such as reinforcement learning with human feedback (RLHF) break down the task into successive stages, such as supervised fine-tuning (SFT), reward modeling (RM), and reinforcement learning (RL), each performing one specific learning task. Such a sequential approach results in serious issues such as significant under-utilization of data and distribution mismatch between the learned reward model and generated policy, which eventually lead to poor alignment performance. We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF), capable of integrating both human preference and demonstration to train reward models and the policy. The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms such as RLHF and Directly Policy Optimization (DPO), and only requires minor changes to the existing alignment pipelines. We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo. We observe that the proposed solutions outperform the existing alignment algorithms such as RLHF and DPO by large margins, especially when the amount of high-quality preference data is relatively limited.