Abstract:Large reasoning models (LRMs) increasingly rely on step-by-step Chain-of-Thought (CoT) reasoning to improve task performance, particularly in high-resource languages such as English. While recent work has examined final-answer accuracy in multilingual settings, the thinking traces themselves, i.e., the intermediate steps that lead to the final answer, remain underexplored. In this paper, we present the first comprehensive study of multilingual CoT reasoning, evaluating three key dimensions: performance, consistency, and faithfulness. We begin by measuring language compliance, answer accuracy, and answer consistency when LRMs are explicitly instructed or prompt-hacked to think in a target language, revealing strong language preferences and divergent performance across languages. Next, we assess crosslingual consistency of thinking traces by interchanging them between languages. We find that the quality and effectiveness of thinking traces vary substantially depending on the prompt language. Finally, we adapt perturbation-based techniques -- i.e., truncation and error injection -- to probe the faithfulness of thinking traces across languages, showing that models rely on traces to varying degrees. We release our code and data to support future research.
Abstract:Large language models (LLMs) are increasingly deployed in multilingual, real-world applications with user inputs -- naturally introducing typographical errors (typos). Yet most benchmarks assume clean input, leaving the robustness of LLMs to typos across languages largely underexplored. To address this gap, we introduce MulTypo, a multilingual typo generation algorithm that simulates human-like errors based on language-specific keyboard layouts and typing behavior. We evaluate 18 open-source LLMs across three model families and five downstream tasks spanning language inference, multi-choice question answering, mathematical reasoning, and machine translation tasks. Our results show that typos consistently degrade performance, particularly in generative tasks and those requiring reasoning -- while the natural language inference task is comparatively more robust. Instruction tuning improves clean-input performance but may increase brittleness under noise. We also observe language-dependent robustness: high-resource languages are generally more robust than low-resource ones, and translation from English is more robust than translation into English. Our findings underscore the need for noise-aware training and multilingual robustness evaluation. We make our code and data publicly available.
Abstract:Autoregressive language models are vulnerable to orthographic attacks, where input text is perturbed with characters from multilingual alphabets, leading to substantial performance degradation. This vulnerability primarily stems from the out-of-vocabulary issue inherent in subword tokenizers and their embeddings. To address this limitation, we propose a pixel-based generative language model that replaces the text-based embeddings with pixel-based representations by rendering words as individual images. This design provides stronger robustness to noisy inputs, while an extension of compatibility to multilingual text across diverse writing systems. We evaluate the proposed method on the multilingual LAMBADA dataset, WMT24 dataset and the SST-2 benchmark, demonstrating both its resilience to orthographic noise and its effectiveness in multilingual settings.
Abstract:Refusal mechanisms in large language models (LLMs) are essential for ensuring safety. Recent research has revealed that refusal behavior can be mediated by a single direction in activation space, enabling targeted interventions to bypass refusals. While this is primarily demonstrated in an English-centric context, appropriate refusal behavior is important for any language, but poorly understood. In this paper, we investigate the refusal behavior in LLMs across 14 languages using PolyRefuse, a multilingual safety dataset created by translating malicious and benign English prompts into these languages. We uncover the surprising cross-lingual universality of the refusal direction: a vector extracted from English can bypass refusals in other languages with near-perfect effectiveness, without any additional fine-tuning. Even more remarkably, refusal directions derived from any safety-aligned language transfer seamlessly to others. We attribute this transferability to the parallelism of refusal vectors across languages in the embedding space and identify the underlying mechanism behind cross-lingual jailbreaks. These findings provide actionable insights for building more robust multilingual safety defenses and pave the way for a deeper mechanistic understanding of cross-lingual vulnerabilities in LLMs.
Abstract:Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.
Abstract:Many pre-trained language models (PLMs) exhibit suboptimal performance on mid- and low-resource languages, largely due to limited exposure to these languages during pre-training. A common strategy to address this is to introduce new tokens specific to the target languages, initialize their embeddings, and apply continual pre-training on target-language data. Among such methods, OFA (Liu et al., 2024a) proposes a similarity-based subword embedding initialization heuristic that is both effective and efficient. However, OFA restricts target-language token embeddings to be convex combinations of a fixed number of source-language embeddings, which may limit expressiveness. To overcome this limitation, we propose HYPEROFA, a hypernetwork-based approach for more adaptive token embedding initialization. The hypernetwork is trained to map from an external multilingual word vector space to the PLMs token embedding space using source-language tokens. Once trained, it can generate flexible embeddings for target-language tokens, serving as a good starting point for continual pretraining. Experiments demonstrate that HYPEROFA consistently outperforms random initialization baseline and matches or exceeds the performance of OFA in both continual pre-training convergence and downstream task performance. We make the code publicly available.
Abstract:Multilingual language models (MLMs) store factual knowledge across languages but often struggle to provide consistent responses to semantically equivalent prompts in different languages. While previous studies point out this cross-lingual inconsistency issue, the underlying causes remain unexplored. In this work, we use mechanistic interpretability methods to investigate cross-lingual inconsistencies in MLMs. We find that MLMs encode knowledge in a language-independent concept space through most layers, and only transition to language-specific spaces in the final layers. Failures during the language transition often result in incorrect predictions in the target language, even when the answers are correct in other languages. To mitigate this inconsistency issue, we propose a linear shortcut method that bypasses computations in the final layers, enhancing both prediction accuracy and cross-lingual consistency. Our findings shed light on the internal mechanisms of MLMs and provide a lightweight, effective strategy for producing more consistent factual outputs.
Abstract:In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation $r$ on the LLM's ability to handle (1) facts whose relation is $r$ and (2) facts whose relation is a different relation $r' \neq r$. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. $\textbf{(i) Neuron cumulativity.}$ The neurons for $r$ present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in $r$. $\textbf{(ii) Neuron versatility.}$ Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. $\textbf{(iii) Neuron interference.}$ Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.
Abstract:Autonomous robotic wiping is an important task in various industries, ranging from industrial manufacturing to sanitization in healthcare. Deep reinforcement learning (Deep RL) has emerged as a promising algorithm, however, it often suffers from a high demand for repetitive reward engineering. Instead of relying on manual tuning, we first analyze the convergence of quality-critical robotic wiping, which requires both high-quality wiping and fast task completion, to show the poor convergence of the problem and propose a new bounded reward formulation to make the problem feasible. Then, we further improve the learning process by proposing a novel visual-language model (VLM) based curriculum, which actively monitors the progress and suggests hyperparameter tuning. We demonstrate that the combined method can find a desirable wiping policy on surfaces with various curvatures, frictions, and waypoints, which cannot be learned with the baseline formulation. The demo of this project can be found at: https://sites.google.com/view/highqualitywiping.
Abstract:Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a comprehensive dataset spanning 7 domains and 21 languages, making it the most extensive multilingual parallel dataset for ABSA to date. Our primary focus is on triplet extraction, which involves identifying aspect terms, aspect categories, and sentiment polarities. The dataset is constructed through an automatic translation process with human review to ensure quality. We perform extensive experiments using various baselines to assess performance and compatibility on M-ABSA. Our empirical findings highlight that the dataset enables diverse evaluation tasks, such as multilingual and multi-domain transfer learning, and large language model evaluation, underscoring its inclusivity and its potential to drive advancements in multilingual ABSA research.