Abstract:With the advent of publicly available AI-based text-to-image systems, the process of creating photorealistic but fully synthetic images has been largely democratized. This can pose a threat to the public through a simplified spread of disinformation. Machine detectors and human media expertise can help to differentiate between AI-generated (fake) and real images and counteract this danger. Although AI generation models are highly prompt-dependent, the impact of the prompt on the fake detection performance has rarely been investigated yet. This work therefore examines the influence of the prompt's level of detail on the detectability of fake images, both with an AI detector and in a user study. For this purpose, we create a novel dataset, COCOXGEN, which consists of real photos from the COCO dataset as well as images generated with SDXL and Fooocus using prompts of two standardized lengths. Our user study with 200 participants shows that images generated with longer, more detailed prompts are detected significantly more easily than those generated with short prompts. Similarly, an AI-based detection model achieves better performance on images generated with longer prompts. However, humans and AI models seem to pay attention to different details, as we show in a heat map analysis.
Abstract:To ensure large language models contain up-to-date knowledge, they need to be updated regularly. However, model editing is challenging as it might also affect knowledge that is unrelated to the new data. State-of-the-art methods identify parameters associated with specific knowledge and then modify them via direct weight updates. However, these locate-and-edit methods suffer from heavy computational overhead and lack theoretical validation. In contrast, directly fine-tuning the model on requested edits affects the model's behavior on unrelated knowledge, and significantly damages the model's generation fluency and consistency. To address these challenges, we propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization. Evaluations on three model editing benchmarks show that SAUL is a practical and reliable solution for model editing outperforming state-of-the-art methods while maintaining generation quality and reducing computational overhead.
Abstract:Advances in information extraction have enabled the automatic construction of large knowledge graphs (e.g., Yago, Wikidata or Google KG), which are widely used in many applications like semantic search or data analytics. However, due to their semi-automatic construction, KGs are often incomplete. Rule learning methods, concerned with the extraction of frequent patterns from KGs and casting them into rules, can be applied to predict potentially missing facts. A crucial step in this process is rule ranking. Ranking of rules is especially challenging over highly incomplete or biased KGs (e.g., KGs predominantly storing facts about famous people), as in this case biased rules might fit the data best and be ranked at the top based on standard statistical metrics like rule confidence. To address this issue, prior works proposed to rank rules not only relying on the original KG but also facts predicted by a KG embedding model. At the same time, with the recent rise of Language Models (LMs), several works have claimed that LMs can be used as alternative means for KG completion. In this work, our goal is to verify to which extent the exploitation of LMs is helpful for improving the quality of rule learning systems.
Abstract:In real-world environments, continual learning is essential for machine learning models, as they need to acquire new knowledge incrementally without forgetting what they have already learned. While pretrained language models have shown impressive capabilities on various static tasks, applying them to continual learning poses significant challenges, including avoiding catastrophic forgetting, facilitating knowledge transfer, and maintaining parameter efficiency. In this paper, we introduce MoCL-P, a novel lightweight continual learning method that addresses these challenges simultaneously. Unlike traditional approaches that continuously expand parameters for newly arriving tasks, MoCL-P integrates task representation-guided module composition with adaptive pruning, effectively balancing knowledge integration and computational overhead. Our evaluation across three continual learning benchmarks with up to 176 tasks shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times, demonstrating its potential for practical applications where resource requirements are constrained.
Abstract:Table Question Answering (TQA) aims at composing an answer to a question based on tabular data. While prior research has shown that TQA models lack robustness, understanding the underlying cause and nature of this issue remains predominantly unclear, posing a significant obstacle to the development of robust TQA systems. In this paper, we formalize three major desiderata for a fine-grained evaluation of robustness of TQA systems. They should (i) answer questions regardless of alterations in table structure, (ii) base their responses on the content of relevant cells rather than on biases, and (iii) demonstrate robust numerical reasoning capabilities. To investigate these aspects, we create and publish a novel TQA evaluation benchmark in English. Our extensive experimental analysis reveals that none of the examined state-of-the-art TQA systems consistently excels in these three aspects. Our benchmark is a crucial instrument for monitoring the behavior of TQA systems and paves the way for the development of robust TQA systems. We release our benchmark publicly.
Abstract:Continual learning aims at incrementally acquiring new knowledge while not forgetting existing knowledge. To overcome catastrophic forgetting, methods are either rehearsal-based, i.e., store data examples from previous tasks for data replay, or isolate parameters dedicated to each task. However, rehearsal-based methods raise privacy and memory issues, and parameter-isolation continual learning does not consider interaction between tasks, thus hindering knowledge transfer. In this work, we propose MoCL, a rehearsal-free Modular and Compositional Continual Learning framework which continually adds new modules to language models and composes them with existing modules. Experiments on various benchmarks show that MoCL outperforms state of the art and effectively facilitates knowledge transfer.
Abstract:Attribution scores indicate the importance of different input parts and can, thus, explain model behaviour. Currently, prompt-based models are gaining popularity, i.a., due to their easier adaptability in low-resource settings. However, the quality of attribution scores extracted from prompt-based models has not been investigated yet. In this work, we address this topic by analyzing attribution scores extracted from prompt-based models w.r.t. plausibility and faithfulness and comparing them with attribution scores extracted from fine-tuned models and large language models. In contrast to previous work, we introduce training size as another dimension into the analysis. We find that using the prompting paradigm (with either encoder-based or decoder-based models) yields more plausible explanations than fine-tuning the models in low-resource settings and Shapley Value Sampling consistently outperforms attention and Integrated Gradients in terms of leading to more plausible and faithful explanations.
Abstract:Most languages of the world pose low-resource challenges to natural language processing models. With multilingual training, knowledge can be shared among languages. However, not all languages positively influence each other and it is an open research question how to select the most suitable set of languages for multilingual training and avoid negative interference among languages whose characteristics or data distributions are not compatible. In this paper, we propose GradSim, a language grouping method based on gradient similarity. Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains compared to other similarity measures and it is better correlated with cross-lingual model performance. As a result, we set the new state of the art on AfriSenti, a benchmark dataset for sentiment analysis on low-resource African languages. In our extensive analysis, we further reveal that besides linguistic features, the topics of the datasets play an important role for language grouping and that lower layers of transformer models encode language-specific features while higher layers capture task-specific information.
Abstract:Word-level saliency explanations ("heat maps over words") are often used to communicate feature-attribution in text-based models. Recent studies found that superficial factors such as word length can distort human interpretation of the communicated saliency scores. We conduct a user study to investigate how the marking of a word's neighboring words affect the explainee's perception of the word's importance in the context of a saliency explanation. We find that neighboring words have significant effects on the word's importance rating. Concretely, we identify that the influence changes based on neighboring direction (left vs. right) and a-priori linguistic and computational measures of phrases and collocations (vs. unrelated neighboring words). Our results question whether text-based saliency explanations should be continued to be communicated at word level, and inform future research on alternative saliency explanation methods.
Abstract:This paper describes our system developed for the SemEval-2023 Task 12 "Sentiment Analysis for Low-resource African Languages using Twitter Dataset". Sentiment analysis is one of the most widely studied applications in natural language processing. However, most prior work still focuses on a small number of high-resource languages. Building reliable sentiment analysis systems for low-resource languages remains challenging, due to the limited training data in this task. In this work, we propose to leverage language-adaptive and task-adaptive pretraining on African texts and study transfer learning with source language selection on top of an African language-centric pretrained language model. Our key findings are: (1) Adapting the pretrained model to the target language and task using a small yet relevant corpus improves performance remarkably by more than 10 F1 score points. (2) Selecting source languages with positive transfer gains during training can avoid harmful interference from dissimilar languages, leading to better results in multilingual and cross-lingual settings. In the shared task, our system wins 8 out of 15 tracks and, in particular, performs best in the multilingual evaluation.