Imperial College London, UK
Abstract:Recent studies in interpretability have explored the inner workings of transformer models trained on tasks across various domains, often discovering that these networks naturally develop surprisingly structured representations. When such representations comprehensively reflect the task domain's structure, they are commonly referred to as ``World Models'' (WMs). In this work, we discover such WMs in transformers trained on maze tasks. In particular, by employing Sparse Autoencoders (SAEs) and analysing attention patterns, we examine the construction of WMs and demonstrate consistency between the circuit analysis and the SAE feature-based analysis. We intervene upon the isolated features to confirm their causal role and, in doing so, find asymmetries between certain types of interventions. Surprisingly, we find that models are able to reason with respect to a greater number of active features than they see during training, even if attempting to specify these in the input token sequence would lead the model to fail. Futhermore, we observe that varying positional encodings can alter how WMs are encoded in a model's residual stream. By analyzing the causal role of these WMs in a toy domain we hope to make progress toward an understanding of emergent structure in the representations acquired by Transformers, leading to the development of more interpretable and controllable AI systems.
Abstract:Advances in information extraction have enabled the automatic construction of large knowledge graphs (e.g., Yago, Wikidata or Google KG), which are widely used in many applications like semantic search or data analytics. However, due to their semi-automatic construction, KGs are often incomplete. Rule learning methods, concerned with the extraction of frequent patterns from KGs and casting them into rules, can be applied to predict potentially missing facts. A crucial step in this process is rule ranking. Ranking of rules is especially challenging over highly incomplete or biased KGs (e.g., KGs predominantly storing facts about famous people), as in this case biased rules might fit the data best and be ranked at the top based on standard statistical metrics like rule confidence. To address this issue, prior works proposed to rank rules not only relying on the original KG but also facts predicted by a KG embedding model. At the same time, with the recent rise of Language Models (LMs), several works have claimed that LMs can be used as alternative means for KG completion. In this work, our goal is to verify to which extent the exploitation of LMs is helpful for improving the quality of rule learning systems.
Abstract:This paper presents PROB-IRM, an approach that learns robust reward machines (RMs) for reinforcement learning (RL) agents from noisy execution traces. The key aspect of RM-driven RL is the exploitation of a finite-state machine that decomposes the agent's task into different subtasks. PROB-IRM uses a state-of-the-art inductive logic programming framework robust to noisy examples to learn RMs from noisy traces using the Bayesian posterior degree of beliefs, thus ensuring robustness against inconsistencies. Pivotal for the results is the interleaving between RM learning and policy learning: a new RM is learned whenever the RL agent generates a trace that is believed not to be accepted by the current RM. To speed up the training of the RL agent, PROB-IRM employs a probabilistic formulation of reward shaping that uses the posterior Bayesian beliefs derived from the traces. Our experimental analysis shows that PROB-IRM can learn (potentially imperfect) RMs from noisy traces and exploit them to train an RL agent to solve its tasks successfully. Despite the complexity of learning the RM from noisy traces, agents trained with PROB-IRM perform comparably to agents provided with handcrafted RMs.
Abstract:Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems, as interpretable symbolic techniques provide formal behaviour guarantees. The challenge is how to effectively integrate neural and symbolic computation, to enable learning and reasoning from raw data. Existing pipelines that train the neural and symbolic components sequentially require extensive labelling, whereas end-to-end approaches are limited in terms of scalability, due to the combinatorial explosion in the symbol grounding problem. In this paper, we leverage the implicit knowledge within foundation models to enhance the performance in NeSy tasks, whilst reducing the amount of data labelling and manual engineering. We introduce a new architecture, called NeSyGPT, which fine-tunes a vision-language foundation model to extract symbolic features from raw data, before learning a highly expressive answer set program to solve a downstream task. Our comprehensive evaluation demonstrates that NeSyGPT has superior accuracy over various baselines, and can scale to complex NeSy tasks. Finally, we highlight the effective use of a large language model to generate the programmatic interface between the neural and symbolic components, significantly reducing the amount of manual engineering required.
Abstract:Argumentation is a very active research field of Artificial Intelligence concerned with the representation and evaluation of arguments used in dialogues between humans and/or artificial agents. Acceptability semantics of formal argumentation systems define the criteria for the acceptance or rejection of arguments. Several software systems, known as argumentation solvers, have been developed to compute the accepted/rejected arguments using such criteria. These include systems that learn to identify the accepted arguments using non-interpretable methods. In this paper we present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way. Through an empirical evaluation we show that our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
Abstract:Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically. Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network. Training the neural and symbolic components jointly is difficult, due to slow and unstable learning, hence many existing systems rely on hand-engineered rules to train the network. We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner. For a given task, NeuralFastLAS computes a relevant set of rules, proved to contain an optimal symbolic solution, trains a neural network using these rules, and finally finds an optimal symbolic solution to the task while taking network predictions into account. A key novelty of our approach is learning a posterior distribution on rules while training the neural network to improve stability during training. We provide theoretical results for a sufficient condition on network training to guarantee correctness of the final solution. Experimental results demonstrate that NeuralFastLAS is able to achieve state-of-the-art accuracy in arithmetic and logical tasks, with a training time that is up to two orders of magnitude faster than other jointly trained neuro-symbolic methods.
Abstract:This volume contains the Technical Communications presented at the 39th International Conference on Logic Programming (ICLP 2023), held at Imperial College London, UK from July 9 to July 15, 2023. Technical Communications included here concern the Main Track, the Doctoral Consortium, the Application and Systems/Demo track, the Recently Published Research Track, the Birds-of-a-Feather track, the Thematic Tracks on Logic Programming and Machine Learning, and Logic Programming and Explainability, Ethics, and Trustworthiness.
Abstract:In this work, following the intuition that adverbs describing scene-sequences are best identified by reasoning over high-level concepts of object-behavior, we propose the design of a new framework that reasons over object-behaviours extracted from raw-video-clips to recognize the clip's corresponding adverb-types. Importantly, while previous works for general scene adverb-recognition assume knowledge of the clips underlying action-types, our method is directly applicable in the more general problem setting where the action-type of a video-clip is unknown. Specifically, we propose a novel pipeline that extracts human-interpretable object-behaviour-facts from raw video clips and propose novel symbolic and transformer based reasoning methods that operate over these extracted facts to identify adverb-types. Experiment results demonstrate that our proposed methods perform favourably against the previous state-of-the-art. Additionally, to support efforts in symbolic video-processing, we release two new datasets of object-behaviour-facts extracted from raw video clips - the MSR-VTT-ASP and ActivityNet-ASP datasets.
Abstract:Clinical decision-making is a fundamental stage in delivering appropriate care to patients. In recent years several decision-making systems designed to aid the clinician in this process have been developed. However, technical solutions currently in use are based on simple regression models and are only able to take into account simple pre-defined multiple-choice features, such as patient age, pre-existing conditions, smoker status, etc. One particular source of patient data, that available decision-making systems are incapable of processing is the collection of patient consultation GP notes. These contain crucial signs and symptoms - the information used by clinicians in order to make a final decision and direct the patient to the appropriate care. Extracting information from GP notes is a technically challenging problem, as they tend to include abbreviations, typos, and incomplete sentences. This paper addresses this open challenge. We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations. By relying on support phrases mined from the SNOMED ontology, as well as predefined supported facts from values used in the RECAP (REmote COVID-19 Assessment in Primary Care) patient risk prediction tool, our graph generative framework is able to extract structured knowledge graphs from the highly unstructured and inconsistent format that consultation notes are written in. Our knowledge graphs include information about existing patient symptoms, their duration, and their severity. We apply our framework to consultation notes of COVID-19 patients in the UK COVID-19 Clinical Assesment Servcie (CCAS) patient dataset. We provide a quantitative evaluation of the performance of our framework, demonstrating that our approach has better accuracy than traditional NLP methods when answering questions about patients.
Abstract:Large pre-trained language models such as BERT have been widely used as a framework for natural language understanding (NLU) tasks. However, recent findings have revealed that pre-trained language models are insensitive to word order. The performance on NLU tasks remains unchanged even after randomly permuting the word of a sentence, where crucial syntactic information is destroyed. To help preserve the importance of word order, we propose a simple approach called Forced Invalidation (FI): forcing the model to identify permuted sequences as invalid samples. We perform an extensive evaluation of our approach on various English NLU and QA based tasks over BERT-based and attention-based models over word embeddings. Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.