Editors
Abstract:We propose a method for generating rule sets as global and local explanations for tree-ensemble learning methods using Answer Set Programming (ASP). To this end, we adopt a decompositional approach where the split structures of the base decision trees are exploited in the construction of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract explanatory rules. For global explanations, candidate rules are chosen from the entire trained tree-ensemble models, whereas for local explanations, candidate rules are selected by only considering rules that are relevant to the particular predicted instance. We show how user-defined constraints and preferences can be represented declaratively in ASP to allow for transparent and flexible rule set generation, and how rules can be used as explanations to help the user better understand the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of classification tasks. Under consideration in Theory and Practice of Logic Programming (TPLP).
Abstract:We introduce a new method for integrating neural networks with logic programming in Neural-Symbolic AI (NeSy), aimed at learning with distant supervision, in which direct labels are unavailable. Unlike prior methods, our approach does not depend on symbolic solvers for reasoning about missing labels. Instead, it evaluates logical implications and constraints in a differentiable manner by embedding both neural network outputs and logic programs into matrices. This method facilitates more efficient learning under distant supervision. We evaluated our approach against existing methods while maintaining a constant volume of training data. The findings indicate that our method not only matches or exceeds the accuracy of other methods across various tasks but also speeds up the learning process. These results highlight the potential of our approach to enhance both accuracy and learning efficiency in NeSy applications.
Abstract:Learning from interpretation transition (LFIT) is a framework for learning rules from observed state transitions. LFIT has been implemented in purely symbolic algorithms, but they are unable to deal with noise or generalize to unobserved transitions. Rule extraction based neural network methods suffer from overfitting, while more general implementation that categorize rules suffer from combinatorial explosion. In this paper, we introduce a technique to leverage variable permutation invariance inherent in symbolic domains. Our technique ensures that the permutation and the naming of the variables would not affect the results. We demonstrate the effectiveness and the scalability of this method with various experiments. Our code is publicly available at https://github.com/phuayj/delta-lfit-2
Abstract:We explore the problem of explaining observations starting from a classically inconsistent theory by adopting a paraconsistent framework. We consider two expansions of the well-known Belnap--Dunn paraconsistent four-valued logic $\mathsf{BD}$: $\mathsf{BD}_\circ$ introduces formulas of the form $\circ\phi$ (the information on $\phi$ is reliable), while $\mathsf{BD}_\triangle$ augments the language with $\triangle\phi$'s (there is information that $\phi$ is true). We define and motivate the notions of abduction problems and explanations in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ and show that they are not reducible to one another. We analyse the complexity of standard abductive reasoning tasks (solution recognition, solution existence, and relevance / necessity of hypotheses) in both logics. Finally, we show how to reduce abduction in $\mathsf{BD}_\circ$ and $\mathsf{BD}_\triangle$ to abduction in classical propositional logic, thereby enabling the reuse of existing abductive reasoning procedures.
Abstract:We propose Large Neighborhood Prioritized Search (LNPS) for solving combinatorial optimization problems in Answer Set Programming (ASP). LNPS is a metaheuristic that starts with an initial solution and then iteratively tries to find better solutions by alternately destroying and prioritized searching for a current solution. Due to the variability of neighborhoods, LNPS allows for flexible search without strongly depending on the destroy operators. We present an implementation of LNPS based on ASP. The resulting heulingo solver demonstrates that LNPS can significantly enhance the solving performance of ASP for optimization. Furthermore, we establish the competitiveness of our LNPS approach by empirically contrasting it to (adaptive) large neighborhood search.
Abstract:Transformer models underpin many recent advances in practical machine learning applications, yet understanding their internal behavior continues to elude researchers. Given the size and complexity of these models, forming a comprehensive picture of their inner workings remains a significant challenge. To this end, we set out to understand small transformer models in a more tractable setting: that of solving mazes. In this work, we focus on the abstractions formed by these models and find evidence for the consistent emergence of structured internal representations of maze topology and valid paths. We demonstrate this by showing that the residual stream of only a single token can be linearly decoded to faithfully reconstruct the entire maze. We also find that the learned embeddings of individual tokens have spatial structure. Furthermore, we take steps towards deciphering the circuity of path-following by identifying attention heads (dubbed $\textit{adjacency heads}$), which are implicated in finding valid subsequent tokens.
Abstract:We develop an approach called bounded combinatorial reconfiguration for solving combinatorial reconfiguration problems based on Answer Set Programming (ASP). The general task is to study the solution spaces of source combinatorial problems and to decide whether or not there are sequences of feasible solutions that have special properties. The resulting recongo solver covers all metrics of the solver track in the most recent international competition on combinatorial reconfiguration (CoRe Challenge 2022). recongo ranked first in the shortest metric of the single-engine solvers track. In this paper, we present the design and implementation of bounded combinatorial reconfiguration, and present an ASP encoding of the independent set reconfiguration problem that is one of the most studied combinatorial reconfiguration problems. Finally, we present empirical analysis considering all instances of CoRe Challenge 2022.
Abstract:We propose an end-to-end approach for answer set programming (ASP) and linear algebraically compute stable models satisfying given constraints. The idea is to implement Lin-Zhao's theorem \cite{Lin04} together with constraints directly in vector spaces as numerical minimization of a cost function constructed from a matricized normal logic program, loop formulas in Lin-Zhao's theorem and constraints, thereby no use of symbolic ASP or SAT solvers involved in our approach. We also propose precomputation that shrinks the program size and heuristics for loop formulas to reduce computational difficulty. We empirically test our approach with programming examples including the 3-coloring and Hamiltonian cycle problems. As our approach is purely numerical and only contains vector/matrix operations, acceleration by parallel technologies such as many-cores and GPUs is expected.
Abstract:Understanding the dynamics of a system is important in many scientific and engineering domains. This problem can be approached by learning state transition rules from observations using machine learning techniques. Such observed time-series data often consist of sequences of many continuous variables with noise and ambiguity, but we often need rules of dynamics that can be modeled with a few essential variables. In this work, we propose a method for extracting a small number of essential hidden variables from high-dimensional time-series data and for learning state transition rules between these hidden variables. The proposed method is based on the Restricted Boltzmann Machine (RBM), which treats observable data in the visible layer and latent features in the hidden layer. However, real-world data, such as video and audio, include both discrete and continuous variables, and these variables have temporal relationships. Therefore, we propose Recurrent Temporal GaussianBernoulli Restricted Boltzmann Machine (RTGB-RBM), which combines Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) to handle continuous visible variables, and Recurrent Temporal Restricted Boltzmann Machine (RT-RBM) to capture time dependence between discrete hidden variables. We also propose a rule-based method that extracts essential information as hidden variables and represents state transition rules in interpretable form. We conduct experiments on Bouncing Ball and Moving MNIST datasets to evaluate our proposed method. Experimental results show that our method can learn the dynamics of those physical systems as state transition rules between hidden variables and can predict unobserved future states from observed state transitions.
Abstract:Moral responsibility is closely intermixed with causality, even if it cannot be reduced to it. Besides, rationally understanding the evolution of the physical world is inherently linked with the idea of causality. It follows that decision making applications based on automated planning, especially if they integrate references to ethical norms, have inevitably to deal with causality. Despite these considerations, much of the work in computational ethics relegates causality to the background, if not ignores it completely. This paper contribution is double. The first one is to link up two research topics$\unicode{x2014}$automated planning and causality$\unicode{x2014}$by proposing an actual causation definition suitable for action languages. This definition is a formalisation of Wright's NESS test of causation. The second is to link up computational ethics and causality by showing the importance of causality in the simulation of ethical reasoning and by enabling the domain to deal with situations that were previously out of reach thanks to the actual causation definition proposed.