University of Potsdam, Germany
Abstract:The dominating set reconfiguration problem is defined as determining, for a given dominating set problem and two among its feasible solutions, whether one is reachable from the other via a sequence of feasible solutions subject to a certain adjacency relation. This problem is PSPACE-complete in general. The concept of the dominating set is known to be quite useful for analyzing wireless networks, social networks, and sensor networks. We develop an approach to solve the dominating set reconfiguration problem based on Answer Set Programming (ASP). Our declarative approach relies on a high-level ASP encoding, and both the grounding and solving tasks are delegated to an ASP-based combinatorial reconfiguration solver. To evaluate the effectiveness of our approach, we conduct experiments on a newly created benchmark set.
Abstract:We are interested in automating reasoning with and about study regulations, catering to various stakeholders, ranging from administrators, over faculty, to students at different stages. Our work builds on an extensive analysis of various study programs at the University of Potsdam. The conceptualization of the underlying principles provides us with a formal account of study regulations. In particular, the formalization reveals the properties of admissible study plans. With these at end, we propose an encoding of study regulations in Answer Set Programming that produces corresponding study plans. Finally, we show how this approach can be extended to a generic user interface for exploring study plans.
Abstract:We propose Large Neighborhood Prioritized Search (LNPS) for solving combinatorial optimization problems in Answer Set Programming (ASP). LNPS is a metaheuristic that starts with an initial solution and then iteratively tries to find better solutions by alternately destroying and prioritized searching for a current solution. Due to the variability of neighborhoods, LNPS allows for flexible search without strongly depending on the destroy operators. We present an implementation of LNPS based on ASP. The resulting heulingo solver demonstrates that LNPS can significantly enhance the solving performance of ASP for optimization. Furthermore, we establish the competitiveness of our LNPS approach by empirically contrasting it to (adaptive) large neighborhood search.
Abstract:We present alternative approaches to routing and scheduling in Answer Set Programming (ASP), and explore them in the context of Multi-agent Path Finding. The idea is to capture the flow of time in terms of partial orders rather than time steps attached to actions and fluents. This also abolishes the need for fixed upper bounds on the length of plans. The trade-off for this avoidance is that (parts of) temporal trajectories must be acyclic, since multiple occurrences of the same action or fluent cannot be distinguished anymore. While this approach provides an interesting alternative for modeling routing, it is without alternative for scheduling since fine-grained timings cannot be represented in ASP in a feasible way. This is different for partial orders that can be efficiently handled by external means such as acyclicity and difference constraints. We formally elaborate upon this idea and present several resulting ASP encodings. Finally, we demonstrate their effectiveness via an empirical analysis.
Abstract:The representation of a dynamic problem in ASP usually boils down to using copies of variables and constraints, one for each time stamp, no matter whether it is directly encoded or via an action or temporal language. The multiplication of variables and constraints is commonly done during grounding and the solver is completely ignorant about the temporal relationship among the different instances. On the other hand, a key factor in the performance of today's ASP solvers is conflict-driven constraint learning. Our question is now whether a constraint learned for particular time steps can be generalized and reused at other time stamps, and ultimately whether this enhances the overall solver performance on temporal problems. Knowing full well the domain of time, we study conditions under which learned dynamic constraints can be generalized. We propose a simple translation of the original logic program such that, for the translated programs, the learned constraints can be generalized to other time points. Additionally, we identify a property of temporal problems that allows us to generalize all learned constraints to all time steps. It turns out that this property is satisfied by many planning problems. Finally, we empirically evaluate the impact of adding the generalized constraints to an ASP solver
Abstract:In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behavior of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric, and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.
Abstract:Extensions of Answer Set Programming with language constructs from temporal logics, such as temporal equilibrium logic over finite traces (TELf), provide an expressive computational framework for modeling dynamic applications. In this paper, we study the so-called past-present syntactic subclass, which consists of a set of logic programming rules whose body references to the past and head to the present. Such restriction ensures that the past remains independent of the future, which is the case in most dynamic domains. We extend the definitions of completion and loop formulas to the case of past-present formulas, which allows capturing the temporal stable models of a set of past-present temporal programs by means of an LTLf expression.
Abstract:We develop an approach called bounded combinatorial reconfiguration for solving combinatorial reconfiguration problems based on Answer Set Programming (ASP). The general task is to study the solution spaces of source combinatorial problems and to decide whether or not there are sequences of feasible solutions that have special properties. The resulting recongo solver covers all metrics of the solver track in the most recent international competition on combinatorial reconfiguration (CoRe Challenge 2022). recongo ranked first in the shortest metric of the single-engine solvers track. In this paper, we present the design and implementation of bounded combinatorial reconfiguration, and present an ASP encoding of the independent set reconfiguration problem that is one of the most studied combinatorial reconfiguration problems. Finally, we present empirical analysis considering all instances of CoRe Challenge 2022.
Abstract:In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behavior of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. However, timing constraints are important in many applications like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time temporal equilibrium logic, in which temporal operators are constrained by intervals over natural numbers. The resulting Metric Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. To this end, we define a translation of metric formulas into monadic first-order formulas and give a correspondence between their models in Metric Equilibrium Logic and Monadic Quantified Equilibrium Logic, respectively. Interestingly, our translation provides a blue print for implementation in terms of ASP modulo difference constraints.
Abstract:We present the ASP-based visualization tool $\textit{clingraph}$ which aims at visualizing various concepts of ASP by means of ASP itself. This idea traces back to the $\textit{aspviz}$ tool and $\textit{clingraph}$ redevelops and extends it in the context of modern ASP systems. More precisely, $\textit{clingraph}$ takes graph specifications in terms of ASP facts and hands them over to the graph visualization system $\textit{graphviz}$. The use of ASP provides a great interface between logic programs and/or answer sets and their visualization. Also, $\textit{clingraph}$ offers a $\textit{python}$ API that extends this ease of interfacing to $\textit{clingo}$'s API, and in turn to connect and monitor various aspects of the solving process.