Abstract:In this paper, we examine the use of Conformal Language Modelling (CLM) alongside Answer Set Programming (ASP) to enhance the performance of standard open-weight LLMs on complex multi-step reasoning tasks. Using the StepGame dataset, which requires spatial reasoning, we apply CLM to generate sets of ASP programs from an LLM, providing statistical guarantees on the correctness of the outputs. Experimental results show that CLM significantly outperforms baseline models that use standard sampling methods, achieving substantial accuracy improvements across different levels of reasoning complexity. Additionally, the LLM-as-Judge metric enhances CLM's performance, especially in assessing structurally and logically correct ASP outputs. However, calibrating CLM with diverse calibration sets did not improve generalizability for tasks requiring much longer reasoning steps, indicating limitations in handling more complex tasks.
Abstract:Ensuring both syntactic and semantic correctness in Large Language Model (LLM) outputs remains a significant challenge, despite being critical for real-world deployment. In this paper, we introduce $\texttt{SEM-CTRL}$, a unified approach that enforces rich context-sensitive constraints and task- and instance-specific semantics directly on an LLM decoder. Our approach integrates token-level MCTS, which is guided by specific syntactic and semantic constraints. The constraints over the desired outputs are expressed using Answer Set Grammars -- a logic-based formalism that generalizes context-sensitive grammars while incorporating background knowledge to represent task-specific semantics. We show that our approach guarantees correct completions for any off-the-shelf LLM without the need for fine-tuning. We evaluate $\texttt{SEM-CTRL}$ on a range of tasks, including synthetic grammar synthesis, combinatorial reasoning, and planning. Our results demonstrate that $\texttt{SEM-CTRL}$ allows small pre-trained LLMs to efficiently outperform larger variants and state-of-the-art reasoning models (e.g., o1-preview) while simultaneously guaranteeing solution correctness.
Abstract:We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
Abstract:We report a controlled study investigating the effect of visual information (i.e., seeing the speaker) on spoken language comprehension. We compare the ERP signature (N400) associated with each word in audio-only and audio-visual presentations of the same verbal stimuli. We assess the extent to which surprisal measures (which quantify the predictability of words in their lexical context) are generated on the basis of different types of language models (specifically n-gram and Transformer models) that predict N400 responses for each word. Our results indicate that cognitive effort differs significantly between multimodal and unimodal settings. In addition, our findings suggest that while Transformer-based models, which have access to a larger lexical context, provide a better fit in the audio-only setting, 2-gram language models are more effective in the multimodal setting. This highlights the significant impact of local lexical context on cognitive processing in a multimodal environment.
Abstract:While state-of-the-art NLP models have demonstrated excellent performance for aspect based sentiment analysis (ABSA), substantial evidence has been presented on their lack of robustness. This is especially manifested as significant degradation in performance when faced with out-of-distribution data. Recent solutions that rely on counterfactually augmented datasets show promising results, but they are inherently limited because of the lack of access to explicit causal structure. In this paper, we present an alternative approach that relies on non-counterfactual data augmentation. Our proposal instead relies on using noisy, cost-efficient data augmentations that preserve semantics associated with the target aspect. Our approach then relies on modelling invariances between different versions of the data to improve robustness. A comprehensive suite of experiments shows that our proposal significantly improves upon strong pre-trained baselines on both standard and robustness-specific datasets. Our approach further establishes a new state-of-the-art on the ABSA robustness benchmark and transfers well across domains.
Abstract:Large pre-trained language models such as BERT have been widely used as a framework for natural language understanding (NLU) tasks. However, recent findings have revealed that pre-trained language models are insensitive to word order. The performance on NLU tasks remains unchanged even after randomly permuting the word of a sentence, where crucial syntactic information is destroyed. To help preserve the importance of word order, we propose a simple approach called Forced Invalidation (FI): forcing the model to identify permuted sequences as invalid samples. We perform an extensive evaluation of our approach on various English NLU and QA based tasks over BERT-based and attention-based models over word embeddings. Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
Abstract:Previous work has established that RNNs with an unbounded activation function have the capacity to count exactly. However, it has also been shown that RNNs are challenging to train effectively and generally do not learn exact counting behaviour. In this paper, we focus on this problem by studying the simplest possible RNN, a linear single-cell network. We conduct a theoretical analysis of linear RNNs and identify conditions for the models to exhibit exact counting behaviour. We provide a formal proof that these conditions are necessary and sufficient. We also conduct an empirical analysis using tasks involving a Dyck-1-like Balanced Bracket language under two different settings. We observe that linear RNNs generally do not meet the necessary and sufficient conditions for counting behaviour when trained with the standard approach. We investigate how varying the length of training sequences and utilising different target classes impacts model behaviour during training and the ability of linear RNN models to effectively approximate the indicator conditions.
Abstract:Providing explanations for visual question answering (VQA) has gained much attention in research. However, most existing systems use separate models for predicting answers and providing explanations. We argue that training explanation models independently of the QA model makes the explanations less grounded and limits performance. To address this, we propose a multitask learning approach towards a Unified Model for more grounded and consistent generation of both Answers and Explanations (UMAE). To achieve this, we add artificial prompt tokens to training instances and finetune a multimodal encoder-decoder model on various VQA tasks. In our experiments, UMAE models surpass the prior SOTA answer accuracy on A-OKVQA by 10~15%, show competitive results on OK-VQA, achieve new SOTA explanation scores on A-OKVQA and VCR, and demonstrate promising out-of-domain performance on VQA-X.
Abstract:In this study, we investigate the generalization of LSTM, ReLU and GRU models on counting tasks over long sequences. Previous theoretical work has established that RNNs with ReLU activation and LSTMs have the capacity for counting with suitable configuration, while GRUs have limitations that prevent correct counting over longer sequences. Despite this and some positive empirical results for LSTMs on Dyck-1 languages, our experimental results show that LSTMs fail to learn correct counting behavior for sequences that are significantly longer than in the training data. ReLUs show much larger variance in behavior and in most cases worse generalization. The long sequence generalization is empirically related to validation loss, but reliable long sequence generalization seems not practically achievable through backpropagation with current techniques. We demonstrate different failure modes for LSTMs, GRUs and ReLUs. In particular, we observe that the saturation of activation functions in LSTMs and the correct weight setting for ReLUs to generalize counting behavior are not achieved in standard training regimens. In summary, learning generalizable counting behavior is still an open problem and we discuss potential approaches for further research.
Abstract:In this work, we focus on improving the captions generated by image-caption generation systems. We propose a novel re-ranking approach that leverages visual-semantic measures to identify the ideal caption that maximally captures the visual information in the image. Our re-ranker utilizes the Belief Revision framework (Blok et al., 2003) to calibrate the original likelihood of the top-n captions by explicitly exploiting the semantic relatedness between the depicted caption and the visual context. Our experiments demonstrate the utility of our approach, where we observe that our re-ranker can enhance the performance of a typical image-captioning system without the necessity of any additional training or fine-tuning.