Abstract:With Large Language Models (LLMs) recently demonstrating impressive proficiency in code generation, it is promising to extend their abilities to Hardware Description Language (HDL). However, LLMs tend to generate single HDL code blocks rather than hierarchical structures for hardware designs, leading to hallucinations, particularly in complex designs like Domain-Specific Accelerators (DSAs). To address this, we propose HiVeGen, a hierarchical LLM-based Verilog generation framework that decomposes generation tasks into LLM-manageable hierarchical submodules. HiVeGen further harnesses the advantages of such hierarchical structures by integrating automatic Design Space Exploration (DSE) into hierarchy-aware prompt generation, introducing weight-based retrieval to enhance code reuse, and enabling real-time human-computer interaction to lower error-correction cost, significantly improving the quality of generated designs.
Abstract:Feature selection is an effective preprocessing technique to reduce data dimension. For feature selection, rough set theory provides many measures, among which mutual information is one of the most important attribute measures. However, mutual information based importance measures are computationally expensive and inaccurate, especially in hypersample instances, and it is undoubtedly a NP-hard problem in high-dimensional hyperhigh-dimensional data sets. Although many representative group intelligent algorithm feature selection strategies have been proposed so far to improve the accuracy, there is still a bottleneck when using these feature selection algorithms to process high-dimensional large-scale data sets, which consumes a lot of performance and is easy to select weakly correlated and redundant features. In this study, we propose an incremental mutual information based improved swarm intelligent optimization method (IMIICSO), which uses rough set theory to calculate the importance of feature selection based on mutual information. This method extracts decision table reduction knowledge to guide group algorithm global search. By exploring the computation of mutual information of supersamples, we can not only discard the useless features to speed up the internal and external computation, but also effectively reduce the cardinality of the optimal feature subset by using IMIICSO method, so that the cardinality is minimized by comparison. The accuracy of feature subsets selected by the improved cockroach swarm algorithm based on incremental mutual information is better or almost the same as that of the original swarm intelligent optimization algorithm. Experiments using 10 datasets derived from UCI, including large scale and high dimensional datasets, confirmed the efficiency and effectiveness of the proposed algorithm.
Abstract:This literature review investigates how robots can be used for the maintenance of manmade structures, such as pipes, reinforced concrete decks, and space stations as a sampling of the broad spectrum of robotic non-destructive testing (NDT) applications. Robotic NDT can be used to find plaque in pipes, corrosion in steel buildings, and impact damage in space stations, which would normally be invisible to the eye. After inspection, the inspected material is preserved in its original condition. The paper's structure is as follows: first, the definition of NDT is elaborated upon with the discussion of specific methods that will be used in the inspection of the structures mentioned above. Second, an explanation follows on why robots are suited to inspection, specifically focusing on robots' advantages over humans. Third, three real-world examples notify the reader of current progress in robot NDT. Lastly, a summary of robot problems serves as a reminder that testing and development must continue for robot NDT to become mainstream.