Abstract:In this paper, we explore a critical yet under-investigated issue: how to learn robust and well-generalized 3D representation from pre-trained vision language models such as CLIP. Previous works have demonstrated that cross-modal distillation can provide rich and useful knowledge for 3D data. However, like most deep learning models, the resultant 3D learning network is still vulnerable to adversarial attacks especially the iterative attack. In this work, we propose Dual Denoising, a novel framework for learning robust and well-generalized 3D representations from CLIP. It combines a denoising-based proxy task with a novel feature denoising network for 3D pre-training. Additionally, we propose utilizing parallel noise inference to enhance the generalization of point cloud features under cross domain settings. Experiments show that our model can effectively improve the representation learning performance and adversarial robustness of the 3D learning network under zero-shot settings without adversarial training. Our code is available at https://github.com/luoshuqing2001/Dual_Denoising.
Abstract:We propose a general method for deep learning based point cloud analysis, which is invariant to rotation on the inputs. Classical methods are vulnerable to rotation, as they usually take aligned point clouds as input. Principle Component Analysis (PCA) is a practical approach to achieve rotation invariance. However, there are still some gaps between theory and practical algorithms. In this work, we present a thorough study on designing rotation invariant algorithms for point cloud analysis. We first formulate it as a permutation invariant problem, then propose a general framework which can be combined with any backbones. Our method is beneficial for further research such as 3D pre-training and multi-modal learning. Experiments show that our method has considerable or better performance compared to state-of-the-art approaches on common benchmarks. Code is available at https://github.com/luoshuqing2001/RI_framework.
Abstract:There is an increasing interest in developing LLMs for medical diagnosis to improve diagnosis efficiency. Despite their alluring technological potential, there is no unified and comprehensive evaluation criterion, leading to the inability to evaluate the quality and potential risks of medical LLMs, further hindering the application of LLMs in medical treatment scenarios. Besides, current evaluations heavily rely on labor-intensive interactions with LLMs to obtain diagnostic dialogues and human evaluation on the quality of diagnosis dialogue. To tackle the lack of unified and comprehensive evaluation criterion, we first initially establish an evaluation criterion, termed LLM-specific Mini-CEX to assess the diagnostic capabilities of LLMs effectively, based on original Mini-CEX. To address the labor-intensive interaction problem, we develop a patient simulator to engage in automatic conversations with LLMs, and utilize ChatGPT for evaluating diagnosis dialogues automatically. Experimental results show that the LLM-specific Mini-CEX is adequate and necessary to evaluate medical diagnosis dialogue. Besides, ChatGPT can replace manual evaluation on the metrics of humanistic qualities and provides reproducible and automated comparisons between different LLMs.