Abstract:As a branch of advanced artificial intelligence, dialogue systems are prospering. Multi-turn response selection is a general research problem in dialogue systems. With the assistance of background information and pre-trained language models, the performance of state-of-the-art methods on this problem gains impressive improvement. However, existing studies neglect the importance of external commonsense knowledge. Hence, we design a Siamese network where a pre-trained Language model merges with a Graph neural network (SinLG). SinLG takes advantage of Pre-trained Language Models (PLMs) to catch the word correlations in the context and response candidates and utilizes a Graph Neural Network (GNN) to reason helpful common sense from an external knowledge graph. The GNN aims to assist the PLM in fine-tuning, and arousing its related memories to attain better performance. Specifically, we first extract related concepts as nodes from an external knowledge graph to construct a subgraph with the context response pair as a super node for each sample. Next, we learn two representations for the context response pair via both the PLM and GNN. A similarity loss between the two representations is utilized to transfer the commonsense knowledge from the GNN to the PLM. Then only the PLM is used to infer online so that efficiency can be guaranteed. Finally, we conduct extensive experiments on two variants of the PERSONA-CHAT dataset, which proves that our solution can not only improve the performance of the PLM but also achieve an efficient inference.
Abstract:Cross-domain Recommendation (CDR) as one of the effective techniques in alleviating the data sparsity issues has been widely studied in recent years. However, previous works may cause domain privacy leakage since they necessitate the aggregation of diverse domain data into a centralized server during the training process. Though several studies have conducted privacy preserving CDR via Federated Learning (FL), they still have the following limitations: 1) They need to upload users' personal information to the central server, posing the risk of leaking user privacy. 2) Existing federated methods mainly rely on atomic item IDs to represent items, which prevents them from modeling items in a unified feature space, increasing the challenge of knowledge transfer among domains. 3) They are all based on the premise of knowing overlapped users between domains, which proves impractical in real-world applications. To address the above limitations, we focus on Privacy-preserving Cross-domain Recommendation (PCDR) and propose PFCR as our solution. For Limitation 1, we develop a FL schema by exclusively utilizing users' interactions with local clients and devising an encryption method for gradient encryption. For Limitation 2, we model items in a universal feature space by their description texts. For Limitation 3, we initially learn federated content representations, harnessing the generality of natural language to establish bridges between domains. Subsequently, we craft two prompt fine-tuning strategies to tailor the pre-trained model to the target domain. Extensive experiments on two real-world datasets demonstrate the superiority of our PFCR method compared to the SOTA approaches.
Abstract:As an indispensable personalized service within Location-Based Social Networks (LBSNs), the Point-of-Interest (POI) recommendation aims to assist individuals in discovering attractive and engaging places. However, the accurate recommendation capability relies on the powerful server collecting a vast amount of users' historical check-in data, posing significant risks of privacy breaches. Although several collaborative learning (CL) frameworks for POI recommendation enhance recommendation resilience and allow users to keep personal data on-device, they still share personal knowledge to improve recommendation performance, thus leaving vulnerabilities for potential attackers. Given this, we design a new Physical Trajectory Inference Attack (PTIA) to expose users' historical trajectories. Specifically, for each user, we identify the set of interacted POIs by analyzing the aggregated information from the target POIs and their correlated POIs. We evaluate the effectiveness of PTIA on two real-world datasets across two types of decentralized CL frameworks for POI recommendation. Empirical results demonstrate that PTIA poses a significant threat to users' historical trajectories. Furthermore, Local Differential Privacy (LDP), the traditional privacy-preserving method for CL frameworks, has also been proven ineffective against PTIA. In light of this, we propose a novel defense mechanism (AGD) against PTIA based on an adversarial game to eliminate sensitive POIs and their information in correlated POIs. After conducting intensive experiments, AGD has been proven precise and practical, with minimal impact on recommendation performance.
Abstract:Imbalanced node classification widely exists in real-world networks where graph neural networks (GNNs) are usually highly inclined to majority classes and suffer from severe performance degradation on classifying minority class nodes. Various imbalanced node classification methods have been proposed recently which construct synthetic nodes and edges w.r.t. minority classes to balance the label and topology distribution. However, they are all based on the homophilic assumption that nodes of the same label tend to connect despite the wide existence of heterophilic edges in real-world graphs. Thus, they uniformly aggregate features from both homophilic and heterophilic neighbors and rely on feature similarity to generate synthetic edges, which cannot be applied to imbalanced graphs in high heterophily. To address this problem, we propose a novel GraphSANN for imbalanced node classification on both homophilic and heterophilic graphs. Firstly, we propose a unified feature mixer to generate synthetic nodes with both homophilic and heterophilic interpolation in a unified way. Next, by randomly sampling edges between synthetic nodes and existing nodes as candidate edges, we design an adaptive subgraph extractor to adaptively extract the contextual subgraphs of candidate edges with flexible ranges. Finally, we develop a multi-filter subgraph encoder that constructs different filter channels to discriminatively aggregate neighbor's information along the homophilic and heterophilic edges. Extensive experiments on eight datasets demonstrate the superiority of our model for imbalanced node classification on both homophilic and heterophilic graphs.
Abstract:As an indispensable personalized service in Location-based Social Networks (LBSNs), the next Point-of-Interest (POI) recommendation aims to help people discover attractive and interesting places. Currently, most POI recommenders are based on the conventional centralized paradigm that heavily relies on the cloud to train the recommendation models with large volumes of collected users' sensitive check-in data. Although a few recent works have explored on-device frameworks for resilient and privacy-preserving POI recommendations, they invariably hold the assumption of model homogeneity for parameters/gradients aggregation and collaboration. However, users' mobile devices in the real world have various hardware configurations (e.g., compute resources), leading to heterogeneous on-device models with different architectures and sizes. In light of this, We propose a novel on-device POI recommendation framework, namely Model-Agnostic Collaborative learning for on-device POI recommendation (MAC), allowing users to customize their own model structures (e.g., dimension \& number of hidden layers). To counteract the sparsity of on-device user data, we propose to pre-select neighbors for collaboration based on physical distances, category-level preferences, and social networks. To assimilate knowledge from the above-selected neighbors in an efficient and secure way, we adopt the knowledge distillation framework with mutual information maximization. Instead of sharing sensitive models/gradients, clients in MAC only share their soft decisions on a preloaded reference dataset. To filter out low-quality neighbors, we propose two sampling strategies, performance-triggered sampling and similarity-based sampling, to speed up the training process and obtain optimal recommenders. In addition, we design two novel approaches to generate more effective reference datasets while protecting users' privacy.
Abstract:Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The fundamental idea of CL-based recommendation models is to maximize the consistency between representations learned from different graph augmentations of the user-item bipartite graph. In such a self-supervised manner, CL-based recommendation models are expected to extract general features from the raw data to tackle the data sparsity issue. Despite the effectiveness of this paradigm, we still have no clue what underlies the performance gains. In this paper, we first reveal that CL enhances recommendation through endowing the model with the ability to learn more evenly distributed user/item representations, which can implicitly alleviate the pervasive popularity bias and promote long-tail items. Meanwhile, we find that the graph augmentations, which were considered a necessity in prior studies, are relatively unreliable and less significant in CL-based recommendation. On top of these findings, we put forward an eXtremely Simple Graph Contrastive Learning method (XSimGCL) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to create views for CL. A comprehensive experimental study on three large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code is released at https://github.com/Coder-Yu/SELFRec.
Abstract:Owing to its nature of scalability and privacy by design, federated learning (FL) has received increasing interest in decentralized deep learning. FL has also facilitated recent research on upscaling and privatizing personalized recommendation services, using on-device data to learn recommender models locally. These models are then aggregated globally to obtain a more performant model, while maintaining data privacy. Typically, federated recommender systems (FRSs) do not consider the lack of resources and data availability at the end-devices. In addition, they assume that the interaction data between users and items is i.i.d. and stationary across end-devices, and that all local recommender models can be directly averaged without considering the user's behavioral diversity. However, in real scenarios, recommendations have to be made on end-devices with sparse interaction data and limited resources. Furthermore, users' preferences are heterogeneous and they frequently visit new items. This makes their personal preferences highly skewed, and the straightforwardly aggregated model is thus ill-posed for such non-i.i.d. data. In this paper, we propose Resource Efficient Federated Recommender System (ReFRS) to enable decentralized recommendation with dynamic and diversified user preferences. On the device side, ReFRS consists of a lightweight self-supervised local model built upon the variational autoencoder for learning a user's temporal preference from a sequence of interacted items. On the server side, ReFRS utilizes a semantic sampler to adaptively perform model aggregation within each identified user cluster. The clustering module operates in an asynchronous and dynamic manner to support efficient global model update and cope with shifting user interests. As a result, ReFRS achieves superior performance in terms of both accuracy and scalability, as demonstrated by comparative experiments.
Abstract:Modern recommender systems operate in a fully server-based fashion. To cater to millions of users, the frequent model maintaining and the high-speed processing for concurrent user requests are required, which comes at the cost of a huge carbon footprint. Meanwhile, users need to upload their behavior data even including the immediate environmental context to the server, raising the public concern about privacy. On-device recommender systems circumvent these two issues with cost-conscious settings and local inference. However, due to the limited memory and computing resources, on-device recommender systems are confronted with two fundamental challenges: (1) how to reduce the size of regular models to fit edge devices? (2) how to retain the original capacity? Previous research mostly adopts tensor decomposition techniques to compress the regular recommendation model with limited compression ratio so as to avoid drastic performance degradation. In this paper, we explore ultra-compact models for next-item recommendation, by loosing the constraint of dimensionality consistency in tensor decomposition. Meanwhile, to compensate for the capacity loss caused by compression, we develop a self-supervised knowledge distillation framework which enables the compressed model (student) to distill the essential information lying in the raw data, and improves the long-tail item recommendation through an embedding-recombination strategy with the original model (teacher). The extensive experiments on two benchmarks demonstrate that, with 30x model size reduction, the compressed model almost comes with no accuracy loss, and even outperforms its uncompressed counterpart in most cases.
Abstract:Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs) due to its effectiveness in helping people decide the next POI to visit. However, accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers. Although there have been several on-device frameworks for privacy-preserving POI recommendations, they are still resource-intensive when it comes to storage and computation, and show limited robustness to the high sparsity of user-POI interactions. On this basis, we propose a novel decentralized collaborative learning framework for POI recommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner. DCLR significantly reduces the local models' dependence on the cloud for training, and can be used to expand arbitrary centralized recommendation models. To counteract the sparsity of on-device user data when learning each local model, we design two self-supervision signals to pretrain the POI representations on the server with geographical and categorical correlations of POIs. To facilitate collaborative learning, we innovatively propose to incorporate knowledge from either geographically or semantically similar users into each local model with attentive aggregation and mutual information maximization. The collaborative learning process makes use of communications between devices while requiring only minor engagement from the central server for identifying user groups, and is compatible with common privacy preservation mechanisms like differential privacy.
Abstract:Self-supervised learning (SSL), which can automatically generate ground-truth samples from raw data, holds vast potential to improve recommender systems. Most existing SSL-based methods perturb the raw data graph with uniform node/edge dropout to generate new data views and then conduct the self-discrimination based contrastive learning over different views to learn generalizable representations. Under this scheme, only a bijective mapping is built between nodes in two different views, which means that the self-supervision signals from other nodes are being neglected. Due to the widely observed homophily in recommender systems, we argue that the supervisory signals from other nodes are also highly likely to benefit the representation learning for recommendation. To capture these signals, a general socially-aware SSL framework that integrates tri-training is proposed in this paper. Technically, our framework first augments the user data views with the user social information. And then under the regime of tri-training for multi-view encoding, the framework builds three graph encoders (one for recommendation) upon the augmented views and iteratively improves each encoder with self-supervision signals from other users, generated by the other two encoders. Since the tri-training operates on the augmented views of the same data sources for self-supervision signals, we name it self-supervised tri-training. Extensive experiments on multiple real-world datasets consistently validate the effectiveness of the self-supervised tri-training framework for improving recommendation. The code is released at https://github.com/Coder-Yu/QRec.