Abstract:Cross-domain Recommendation (CDR) as one of the effective techniques in alleviating the data sparsity issues has been widely studied in recent years. However, previous works may cause domain privacy leakage since they necessitate the aggregation of diverse domain data into a centralized server during the training process. Though several studies have conducted privacy preserving CDR via Federated Learning (FL), they still have the following limitations: 1) They need to upload users' personal information to the central server, posing the risk of leaking user privacy. 2) Existing federated methods mainly rely on atomic item IDs to represent items, which prevents them from modeling items in a unified feature space, increasing the challenge of knowledge transfer among domains. 3) They are all based on the premise of knowing overlapped users between domains, which proves impractical in real-world applications. To address the above limitations, we focus on Privacy-preserving Cross-domain Recommendation (PCDR) and propose PFCR as our solution. For Limitation 1, we develop a FL schema by exclusively utilizing users' interactions with local clients and devising an encryption method for gradient encryption. For Limitation 2, we model items in a universal feature space by their description texts. For Limitation 3, we initially learn federated content representations, harnessing the generality of natural language to establish bridges between domains. Subsequently, we craft two prompt fine-tuning strategies to tailor the pre-trained model to the target domain. Extensive experiments on two real-world datasets demonstrate the superiority of our PFCR method compared to the SOTA approaches.
Abstract:Traditional methods in Chinese typography synthesis view characters as an assembly of radicals and strokes, but they rely on manual definition of the key points, which is still time-costing. Some recent work on computer vision proposes a brand new approach: to treat every Chinese character as an independent and inseparable image, so the pre-processing and post-processing of each character can be avoided. Then with a combination of a transfer network and a discriminating network, one typography can be well transferred to another. Despite the quite satisfying performance of the model, the training process requires to be supervised, which means in the training data each character in the source domain and the target domain needs to be perfectly paired. Sometimes the pairing is time-costing, and sometimes there is no perfect pairing, such as the pairing between traditional Chinese and simplified Chinese characters. In this paper, we proposed an unsupervised typography transfer method which doesn't need pairing.