Abstract:The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks. A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
Abstract:Medical image analysis is crucial in modern radiological diagnostics, especially given the exponential growth in medical imaging data. The demand for automated report generation systems has become increasingly urgent. While prior research has mainly focused on using machine learning and multimodal language models for 2D medical images, the generation of reports for 3D medical images has been less explored due to data scarcity and computational complexities. This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model specifically designed for generating radiology reports from 3D CT scans, particularly chest CTs. Extensive experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality. Although current methods are few, including the partially open-source CT2Rep and the open-source M3D, we ensured fair comparison through appropriate data conversion and evaluation methodologies. Experimental results indicate that 3D-CT-GPT enhances diagnostic accuracy and report coherence, establishing itself as a robust solution for clinical radiology report generation. Future work will focus on expanding the dataset and further optimizing the model to enhance its performance and applicability.
Abstract:Music is essential in daily life, fulfilling emotional and entertainment needs, and connecting us personally, socially, and culturally. A better understanding of music can enhance our emotions, cognitive skills, and cultural connections. The rapid advancement of artificial intelligence (AI) has introduced new ways to analyze music, aiming to replicate human understanding of music and provide related services. While the traditional models focused on audio features and simple tasks, the recent development of large language models (LLMs) and foundation models (FMs), which excel in various fields by integrating semantic information and demonstrating strong reasoning abilities, could capture complex musical features and patterns, integrate music with language and incorporate rich musical, emotional and psychological knowledge. Therefore, they have the potential in handling complex music understanding tasks from a semantic perspective, producing outputs closer to human perception. This work, to our best knowledge, is one of the early reviews of the intersection of AI techniques and music understanding. We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities. We also discussed their limitations and proposed possible future directions, offering insights for researchers in this field.
Abstract:Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
Abstract:High-precision control for nonlinear systems is impeded by the low-fidelity dynamical model and external disturbance. Especially, the intricate coupling between internal uncertainty and external disturbance is usually difficult to be modeled explicitly. Here we show an effective and convergent algorithm enabling accurate estimation of the coupled disturbance via combining control and learning philosophies. Specifically, by resorting to Chebyshev series expansion, the coupled disturbance is firstly decomposed into an unknown parameter matrix and two known structures depending on system state and external disturbance respectively. A Regularized Least Squares (RLS) algorithm is subsequently formalized to learn the parameter matrix by using historical time-series data. Finally, a higher-order disturbance observer (HODO) is developed to achieve a high-precision estimation of the coupled disturbance by utilizing the learned portion. The efficiency of the proposed algorithm is evaluated through extensive simulations. We believe this work can offer a new option to merge learning schemes into the control framework for addressing existing intractable control problems.
Abstract:News media structure their reporting of events or issues using certain perspectives. When describing an incident involving gun violence, for example, some journalists may focus on mental health or gun regulation, while others may emphasize the discussion of gun rights. Such perspectives are called \say{frames} in communication research. We study, for the first time, the value of combining lead images and their contextual information with text to identify the frame of a given news article. We observe that using multiple modes of information(article- and image-derived features) improves prediction of news frames over any single mode of information when the images are relevant to the frames of the headlines. We also observe that frame image relevance is related to the ease of conveying frames via images, which we call frame concreteness. Additionally, we release the first multimodal news framing dataset related to gun violence in the U.S., curated and annotated by communication researchers. The dataset will allow researchers to further examine the use of multiple information modalities for studying media framing.
Abstract:In multi-modal frameworks, the alignment of cross-modal features presents a significant challenge. The predominant approach in multi-modal pre-training emphasizes either global or local alignment between modalities, utilizing extensive datasets. This bottom-up driven method often suffers from a lack of interpretability, a critical concern in radiology. Previous studies have integrated high-level labels in medical images or text, but these still rely on manual annotation, a costly and labor-intensive process. Our work introduces a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. This data, indicating radiologists' focus areas, naturally links chest X-rays to diagnostic texts. We propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of image and text features, aiming to reduce reliance on manual annotations and thus cut training costs. Our model demonstrates robust performance, outperforming other state-of-the-art methods in zero-shot classification and retrieval tasks. The incorporation of easily-obtained eye-gaze data during routine radiological diagnoses signifies a step towards minimizing manual annotation dependency. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal pre-training.
Abstract:Cross-domain Recommendation (CDR) as one of the effective techniques in alleviating the data sparsity issues has been widely studied in recent years. However, previous works may cause domain privacy leakage since they necessitate the aggregation of diverse domain data into a centralized server during the training process. Though several studies have conducted privacy preserving CDR via Federated Learning (FL), they still have the following limitations: 1) They need to upload users' personal information to the central server, posing the risk of leaking user privacy. 2) Existing federated methods mainly rely on atomic item IDs to represent items, which prevents them from modeling items in a unified feature space, increasing the challenge of knowledge transfer among domains. 3) They are all based on the premise of knowing overlapped users between domains, which proves impractical in real-world applications. To address the above limitations, we focus on Privacy-preserving Cross-domain Recommendation (PCDR) and propose PFCR as our solution. For Limitation 1, we develop a FL schema by exclusively utilizing users' interactions with local clients and devising an encryption method for gradient encryption. For Limitation 2, we model items in a universal feature space by their description texts. For Limitation 3, we initially learn federated content representations, harnessing the generality of natural language to establish bridges between domains. Subsequently, we craft two prompt fine-tuning strategies to tailor the pre-trained model to the target domain. Extensive experiments on two real-world datasets demonstrate the superiority of our PFCR method compared to the SOTA approaches.
Abstract:Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users' identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines.
Abstract:We propose SutraNets, a novel method for neural probabilistic forecasting of long-sequence time series. SutraNets use an autoregressive generative model to factorize the likelihood of long sequences into products of conditional probabilities. When generating long sequences, most autoregressive approaches suffer from harmful error accumulation, as well as challenges in modeling long-distance dependencies. SutraNets treat long, univariate prediction as multivariate prediction over lower-frequency sub-series. Autoregression proceeds across time and across sub-series in order to ensure coherent multivariate (and, hence, high-frequency univariate) outputs. Since sub-series can be generated using fewer steps, SutraNets effectively reduce error accumulation and signal path distances. We find SutraNets to significantly improve forecasting accuracy over competitive alternatives on six real-world datasets, including when we vary the number of sub-series and scale up the depth and width of the underlying sequence models.