Abstract:Recommender systems often rely on large embedding tables that map users and items to dense vectors of uniform size, leading to substantial memory consumption and inefficiencies. This is particularly problematic in memory-constrained environments like mobile and Web of Things (WoT) applications, where scalability and real-time performance are critical. Various research efforts have sought to address these issues. Although embedding pruning methods utilizing Dynamic Sparse Training (DST) stand out due to their low training and inference costs, consistent sparsity, and end-to-end differentiability, they face key challenges. Firstly, they typically initializes the mask matrix, which is used to prune redundant parameters, with random uniform sparse initialization. This strategy often results in suboptimal performance as it creates unstructured and inefficient connections. Secondly, they tend to favor the users/items sampled in the single batch immediately before weight exploration when they reactivate pruned parameters with large gradient magnitudes, which does not necessarily improve the overall performance. Thirdly, while they use sparse weights during forward passes, they still need to compute dense gradients during backward passes. In this paper, we propose SparseRec, an lightweight embedding method based on DST, to address these issues. Specifically, SparseRec initializes the mask matrix using Nonnegative Matrix Factorization. It accumulates gradients to identify the inactive parameters that can better improve the model performance after activation. Furthermore, it avoids dense gradients during backpropagation by sampling a subset of important vectors. Gradients are calculated only for parameters in this subset, thus maintaining sparsity during training in both forward and backward passes.
Abstract:Decentralized collaborative learning for Point-of-Interest (POI) recommendation has gained research interest due to its advantages in privacy preservation and efficiency, as it keeps data locally and leverages collaborative learning among clients to train models in a decentralized manner. However, since local data is often limited and insufficient for training accurate models, a common solution is integrating external knowledge as auxiliary information to enhance model performance. Nevertheless, this solution poses challenges for decentralized collaborative learning. Due to private nature of local data, identifying relevant auxiliary information specific to each user is non-trivial. Furthermore, resource-constrained local devices struggle to accommodate all auxiliary information, which places heavy burden on local storage. To fill the gap, we propose a novel decentralized collaborative learning with knowledge graph enhancement framework for POI recommendation (DecKG). Instead of directly uploading interacted items, users generate desensitized check-in data by uploading general categories of interacted items and sampling similar items from same category. The server then pretrains KG without sensitive user-item interactions and deploys relevant partitioned sub-KGs to individual users. Entities are further refined on the device, allowing client to client communication to exchange knowledge learned from local data and sub-KGs. Evaluations across two real-world datasets demonstrate DecKG's effectiveness recommendation performance.
Abstract:Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations. In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server. While this rigid framework protects users' raw data during training, it severely compromises the recommendation model's performance due to the following reasons: (1) Due to the power law distribution nature of user behavior data, individual users have few data points to train a recommendation model, resulting in uploaded model updates that may be far from optimal; (2) As each user's uploaded parameters are learned from local data, which lacks global collaborative information, relying solely on parameter aggregation methods such as FedAvg to fuse global collaborative information may be suboptimal. To bridge this performance gap, we propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee. Based on the shared but perturbed data, an auxiliary model is trained in parallel with the original federated recommendation process. This auxiliary model enhances FedRec by augmenting each user's local dataset and integrating global collaborative information. To demonstrate the effectiveness of PDC-FRS, we conduct extensive experiments on two widely used recommendation datasets. The empirical results showcase the superiority of PDC-FRS compared to baseline methods.
Abstract:Recommender systems typically represent users and items by learning their embeddings, which are usually set to uniform dimensions and dominate the model parameters. However, real-world recommender systems often operate in streaming recommendation scenarios, where the number of users and items continues to grow, leading to substantial storage resource consumption for these embeddings. Although a few methods attempt to mitigate this by employing embedding size search strategies to assign different embedding dimensions in streaming recommendations, they assume that the embedding size grows with the frequency of users/items, which eventually still exceeds the predefined memory budget over time. To address this issue, this paper proposes to learn Scalable Lightweight Embeddings for streaming recommendation, called SCALL, which can adaptively adjust the embedding sizes of users/items within a given memory budget over time. Specifically, we propose to sample embedding sizes from a probabilistic distribution, with the guarantee to meet any predefined memory budget. By fixing the memory budget, the proposed embedding size sampling strategy can increase and decrease the embedding sizes in accordance to the frequency of the corresponding users or items. Furthermore, we develop a reinforcement learning-based search paradigm that models each state with mean pooling to keep the length of the state vectors fixed, invariant to the changing number of users and items. As a result, the proposed method can provide embedding sizes to unseen users and items. Comprehensive empirical evaluations on two public datasets affirm the advantageous effectiveness of our proposed method.
Abstract:Sequential recommender systems have made significant progress. Recently, due to increasing concerns about user data privacy, some researchers have implemented federated learning for sequential recommendation, a.k.a., Federated Sequential Recommender Systems (FedSeqRecs), in which a public sequential recommender model is shared and frequently transmitted between a central server and clients to achieve collaborative learning. Although these solutions mitigate user privacy to some extent, they present two significant limitations that affect their practical usability: (1) They require a globally shared sequential recommendation model. However, in real-world scenarios, the recommendation model constitutes a critical intellectual property for platform and service providers. Therefore, service providers may be reluctant to disclose their meticulously developed models. (2) The communication costs are high as they correlate with the number of model parameters. This becomes particularly problematic as the current FedSeqRec will be inapplicable when sequential recommendation marches into a large language model era. To overcome the above challenges, this paper proposes a parameter transmission-free federated sequential recommendation framework (PTF-FSR), which ensures both model and data privacy protection to meet the privacy needs of service providers and system users alike. Furthermore, since PTF-FSR only transmits prediction results under privacy protection, which are independent of model sizes, this new federated learning architecture can accommodate more complex and larger sequential recommendation models. Extensive experiments conducted on three widely used recommendation datasets, employing various sequential recommendation models from both ID-based and ID-free paradigms, demonstrate the effectiveness and generalization capability of our proposed framework.
Abstract:The application of deep learning techniques to medical problems has garnered widespread research interest in recent years, such as applying convolutional neural networks to medical image classification tasks. However, data in the medical field is often highly private, preventing different hospitals from sharing data to train an accurate model. Federated learning, as a privacy-preserving machine learning architecture, has shown promising performance in balancing data privacy and model utility by keeping private data on the client's side and using a central server to coordinate a set of clients for model training through aggregating their uploaded model parameters. Yet, this architecture heavily relies on a trusted third-party server, which is challenging to achieve in real life. Swarm learning, as a specialized decentralized federated learning architecture that does not require a central server, utilizes blockchain technology to enable direct parameter exchanges between clients. However, the mining of blocks requires significant computational resources, limiting its scalability. To address this issue, this paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL. This approach clusters similar clients into different groups based on their model distributions. Additionally, leveraging the architecture of BSO, clients are given the probability to engage in collaborative learning both within their cluster and with clients outside their cluster, preventing the model from converging to local optima. The proposed method has been validated on a real-world diabetic retinopathy image classification dataset, and the experimental results demonstrate the effectiveness of the proposed approach.
Abstract:The embedding-based architecture has become the dominant approach in modern recommender systems, mapping users and items into a compact vector space. It then employs predefined similarity metrics, such as the inner product, to calculate similarity scores between user and item embeddings, thereby guiding the recommendation of items that align closely with a user's preferences. Given the critical role of similarity metrics in recommender systems, existing methods mainly employ handcrafted similarity metrics to capture the complex characteristics of user-item interactions. Yet, handcrafted metrics may not fully capture the diverse range of similarity patterns that can significantly vary across different domains. To address this issue, we propose an Automated Similarity Metric Generation method for recommendations, named AutoSMG, which can generate tailored similarity metrics for various domains and datasets. Specifically, we first construct a similarity metric space by sampling from a set of basic embedding operators, which are then integrated into computational graphs to represent metrics. We employ an evolutionary algorithm to search for the optimal metrics within this metric space iteratively. To improve search efficiency, we utilize an early stopping strategy and a surrogate model to approximate the performance of candidate metrics instead of fully training models. Notably, our proposed method is model-agnostic, which can seamlessly plugin into different recommendation model architectures. The proposed method is validated on three public recommendation datasets across various domains in the Top-K recommendation task, and experimental results demonstrate that AutoSMG outperforms both commonly used handcrafted metrics and those generated by other search strategies.
Abstract:To make room for privacy and efficiency, the deployment of many recommender systems is experiencing a shift from central servers to personal devices, where the federated recommender systems (FedRecs) and decentralized collaborative recommender systems (DecRecs) are arguably the two most representative paradigms. While both leverage knowledge (e.g., gradients) sharing to facilitate learning local models, FedRecs rely on a central server to coordinate the optimization process, yet in DecRecs, the knowledge sharing directly happens between clients. Knowledge sharing also opens a backdoor for model poisoning attacks, where adversaries disguise themselves as benign clients and disseminate polluted knowledge to achieve malicious goals like promoting an item's exposure rate. Although research on such poisoning attacks provides valuable insights into finding security loopholes and corresponding countermeasures, existing attacks mostly focus on FedRecs, and are either inapplicable or ineffective for DecRecs. Compared with FedRecs where the tampered information can be universally distributed to all clients once uploaded to the cloud, each adversary in DecRecs can only communicate with neighbor clients of a small size, confining its impact to a limited range. To fill the gap, we present a novel attack method named Poisoning with Adaptive Malicious Neighbors (PAMN). With item promotion in top-K recommendation as the attack objective, PAMN effectively boosts target items' ranks with several adversaries that emulate benign clients and transfers adaptively crafted gradients conditioned on each adversary's neighbors. Moreover, with the vulnerabilities of DecRecs uncovered, a dedicated defensive mechanism based on user-level gradient clipping with sparsified updating is proposed. Extensive experiments demonstrate the effectiveness of the poisoning attack and the robustness of our defensive mechanism.
Abstract:Federated Recommender Systems (FedRecs) have garnered increasing attention recently, thanks to their privacy-preserving benefits. However, the decentralized and open characteristics of current FedRecs present two dilemmas. First, the performance of FedRecs is compromised due to highly sparse on-device data for each client. Second, the system's robustness is undermined by the vulnerability to model poisoning attacks launched by malicious users. In this paper, we introduce a novel contrastive learning framework designed to fully leverage the client's sparse data through embedding augmentation, referred to as CL4FedRec. Unlike previous contrastive learning approaches in FedRecs that necessitate clients to share their private parameters, our CL4FedRec aligns with the basic FedRec learning protocol, ensuring compatibility with most existing FedRec implementations. We then evaluate the robustness of FedRecs equipped with CL4FedRec by subjecting it to several state-of-the-art model poisoning attacks. Surprisingly, our observations reveal that contrastive learning tends to exacerbate the vulnerability of FedRecs to these attacks. This is attributed to the enhanced embedding uniformity, making the polluted target item embedding easily proximate to popular items. Based on this insight, we propose an enhanced and robust version of CL4FedRec (rCL4FedRec) by introducing a regularizer to maintain the distance among item embeddings with different popularity levels. Extensive experiments conducted on four commonly used recommendation datasets demonstrate that CL4FedRec significantly enhances both the model's performance and the robustness of FedRecs.
Abstract:Federated recommender systems (FedRecs) have gained significant attention for their potential to protect user's privacy by keeping user privacy data locally and only communicating model parameters/gradients to the server. Nevertheless, the currently existing architecture of FedRecs assumes that all users have the same 0-privacy budget, i.e., they do not upload any data to the server, thus overlooking those users who are less concerned about privacy and are willing to upload data to get a better recommendation service. To bridge this gap, this paper explores a user-governed data contribution federated recommendation architecture where users are free to take control of whether they share data and the proportion of data they share to the server. To this end, this paper presents a cloud-device collaborative graph neural network federated recommendation model, named CDCGNNFed. It trains user-centric ego graphs locally, and high-order graphs based on user-shared data in the server in a collaborative manner via contrastive learning. Furthermore, a graph mending strategy is utilized to predict missing links in the graph on the server, thus leveraging the capabilities of graph neural networks over high-order graphs. Extensive experiments were conducted on two public datasets, and the results demonstrate the effectiveness of the proposed method.