Abstract:Relevance modeling between queries and items stands as a pivotal component in commercial search engines, directly affecting the user experience. Given the remarkable achievements of large language models (LLMs) in various natural language processing (NLP) tasks, LLM-based relevance modeling is gradually being adopted within industrial search systems. Nevertheless, foundational LLMs lack domain-specific knowledge and do not fully exploit the potential of in-context learning. Furthermore, structured item text remains underutilized, and there is a shortage in the supply of corresponding queries and background knowledge. We thereby propose CPRM (Continual Pre-training for Relevance Modeling), a framework designed for the continual pre-training of LLMs to address these issues. Our CPRM framework includes three modules: 1) employing both queries and multi-field item to jointly pre-train for enhancing domain knowledge, 2) applying in-context pre-training, a novel approach where LLMs are pre-trained on a sequence of related queries or items, and 3) conducting reading comprehension on items to produce associated domain knowledge and background information (e.g., generating summaries and corresponding queries) to further strengthen LLMs. Results on offline experiments and online A/B testing demonstrate that our model achieves convincing performance compared to strong baselines.
Abstract:With the rise of large language models (LLMs), recent works have leveraged LLMs to improve the performance of click-through rate (CTR) prediction. However, we argue that a critical obstacle remains in deploying LLMs for practical use: the efficiency of LLMs when processing long textual user behaviors. As user sequences grow longer, the current efficiency of LLMs is inadequate for training on billions of users and items. To break through the efficiency barrier of LLMs, we propose Behavior Aggregated Hierarchical Encoding (BAHE) to enhance the efficiency of LLM-based CTR modeling. Specifically, BAHE proposes a novel hierarchical architecture that decouples the encoding of user behaviors from inter-behavior interactions. Firstly, to prevent computational redundancy from repeated encoding of identical user behaviors, BAHE employs the LLM's pre-trained shallow layers to extract embeddings of the most granular, atomic user behaviors from extensive user sequences and stores them in the offline database. Subsequently, the deeper, trainable layers of the LLM facilitate intricate inter-behavior interactions, thereby generating comprehensive user embeddings. This separation allows the learning of high-level user representations to be independent of low-level behavior encoding, significantly reducing computational complexity. Finally, these refined user embeddings, in conjunction with correspondingly processed item embeddings, are incorporated into the CTR model to compute the CTR scores. Extensive experimental results show that BAHE reduces training time and memory by five times for CTR models using LLMs, especially with longer user sequences. BAHE has been deployed in a real-world system, allowing for daily updates of 50 million CTR data on 8 A100 GPUs, making LLMs practical for industrial CTR prediction.
Abstract:Click-through rate (CTR) prediction is a crucial issue in recommendation systems. There has been an emergence of various public CTR datasets. However, existing datasets primarily suffer from the following limitations. Firstly, users generally click different types of items from multiple scenarios, and modeling from multiple scenarios can provide a more comprehensive understanding of users. Existing datasets only include data for the same type of items from a single scenario. Secondly, multi-modal features are essential in multi-scenario prediction as they address the issue of inconsistent ID encoding between different scenarios. The existing datasets are based on ID features and lack multi-modal features. Third, a large-scale dataset can provide a more reliable evaluation of models, fully reflecting the performance differences between models. The scale of existing datasets is around 100 million, which is relatively small compared to the real-world CTR prediction. To address these limitations, we propose AntM$^{2}$C, a Multi-Scenario Multi-Modal CTR dataset based on industrial data from Alipay. Specifically, AntM$^{2}$C provides the following advantages: 1) It covers CTR data of 5 different types of items, providing insights into the preferences of users for different items, including advertisements, vouchers, mini-programs, contents, and videos. 2) Apart from ID-based features, AntM$^{2}$C also provides 2 multi-modal features, raw text and image features, which can effectively establish connections between items with different IDs. 3) AntM$^{2}$C provides 1 billion CTR data with 200 features, including 200 million users and 6 million items. It is currently the largest-scale CTR dataset available. Based on AntM$^{2}$C, we construct several typical CTR tasks and provide comparisons with baseline methods. The dataset homepage is available at https://www.atecup.cn/home.
Abstract:Multi-task learning (MTL) aims at solving multiple related tasks simultaneously and has experienced rapid growth in recent years. However, MTL models often suffer from performance degeneration with negative transfer due to learning several tasks simultaneously. Some related work attributed the source of the problem is the conflicting gradients. In this case, it is needed to select useful gradient updates for all tasks carefully. To this end, we propose a novel optimization approach for MTL, named GDOD, which manipulates gradients of each task using an orthogonal basis decomposed from the span of all task gradients. GDOD decomposes gradients into task-shared and task-conflict components explicitly and adopts a general update rule for avoiding interference across all task gradients. This allows guiding the update directions depending on the task-shared components. Moreover, we prove the convergence of GDOD theoretically under both convex and non-convex assumptions. Experiment results on several multi-task datasets not only demonstrate the significant improvement of GDOD performed to existing MTL models but also prove that our algorithm outperforms state-of-the-art optimization methods in terms of AUC and Logloss metrics.
Abstract:Click-Through Rate (CTR) prediction plays an important role in many industrial applications, and recently a lot of attention is paid to the deep interest models which use attention mechanism to capture user interests from historical behaviors. However, most current models are based on sequential models which truncate the behavior sequences by a fixed length, thus have difficulties in handling very long behavior sequences. Another big problem is that sequences with the same length can be quite different in terms of time, carrying completely different meanings. In this paper, we propose a non-sequential approach to tackle the above problems. Specifically, we first represent the behavior data in a sparse key-vector format, where the vector contains rich behavior info such as time, count and category. Next, we enhance the Deep Interest Network to take such rich information into account by a novel attention network. The sparse representation makes it practical to handle large scale long behavior sequences. Finally, we introduce a multidimensional partition framework to mine behavior interactions. The framework can partition data into custom designed time buckets to capture the interactions among information aggregated in different time buckets. Similarly, it can also partition the data into different categories and capture the interactions among them. Experiments are conducted on two public datasets: one is an advertising dataset and the other is a production recommender dataset. Our models outperform other state-of-the-art models on both datasets.