Abstract:Hybrid spectral CT integrates energy integrating detectors (EID) and photon counting detectors (PCD) into a single system, combining the large field-of-view advantage of EID with the high energy and spatial resolution of PCD. This represents a new research direction in spectral CT imaging. However, the different imaging principles and inconsistent geometric paths of the two detectors make it difficult to reconstruct images using data from hybrid detectors. In addition, the quality reconstructed images considering spectrum is affected by the accuracy of spectral estimation and the scattered photons. In this work, Firstly, we propose a general hybrid spectral reconstruction method that takes into account both the spectral CT imaging principles of the two different detectors and the influence of scattered photons in the forward process modelling. Furthermore, we also apply volume fraction constraints to the results reconstructed from the two detector data. By alternately solving the spectral estimation and the spectral image reconstruction by the ADMM method, the estimated spectra and the reconstructed images reinforce each other, thus improving the accuracy of the spectral estimation and the quality of the reconstructed images. The proposed method is the first to achieve hybrid spectral CT reconstruction for both detectors, allowing simultaneous recovery of spectrum and image reconstruction from hybrid spectral data containing scattering. In addition, the method is also applicable to spectral CT imaging using a single type of detector. We validated the effectiveness of the proposed method through numerical experiments and successfully performed the first hybrid spectral CT reconstruction experiment on our self-developed hybrid spectral CT system.
Abstract:This study proposes a neural disparity field (NDF) that establishes an implicit, continuous representation of scene disparity based on a neural field and an iterative approach to address the inverse problem of NDF reconstruction from light-field data. NDF enables seamless and precise characterization of disparity variations in three-dimensional scenes and can discretize disparity at any arbitrary resolution, overcoming the limitations of traditional disparity maps that are prone to sampling errors and interpolation inaccuracies. The proposed NDF network architecture utilizes hash encoding combined with multilayer perceptrons to capture detailed disparities in texture levels, thereby enhancing its ability to represent the geometric information of complex scenes. By leveraging the spatial-angular consistency inherent in light-field data, a differentiable forward model to generate a central view image from the light-field data is developed. Based on the forward model, an optimization scheme for the inverse problem of NDF reconstruction using differentiable propagation operators is established. Furthermore, an iterative solution method is adopted to reconstruct the NDF in the optimization scheme, which does not require training datasets and applies to light-field data captured by various acquisition methods. Experimental results demonstrate that high-quality NDF can be reconstructed from light-field data using the proposed method. High-resolution disparity can be effectively recovered by NDF, demonstrating its capability for the implicit, continuous representation of scene disparities.
Abstract:In spectral CT reconstruction, the basis materials decomposition involves solving a large-scale nonlinear system of integral equations, which is highly ill-posed mathematically. This paper proposes a model that parameterizes the attenuation coefficients of the object using a neural field representation, thereby avoiding the complex calculations of pixel-driven projection coefficient matrices during the discretization process of line integrals. It introduces a lightweight discretization method for line integrals based on a ray-driven neural field, enhancing the accuracy of the integral approximation during the discretization process. The basis materials are represented as continuous vector-valued implicit functions to establish a neural field parameterization model for the basis materials. The auto-differentiation framework of deep learning is then used to solve the implicit continuous function of the neural base-material fields. This method is not limited by the spatial resolution of reconstructed images, and the network has compact and regular properties. Experimental validation shows that our method performs exceptionally well in addressing the spectral CT reconstruction. Additionally, it fulfils the requirements for the generation of high-resolution reconstruction images.
Abstract:Continuous Integration (CI) build failures could significantly impact the software development process and teams, such as delaying the release of new features and reducing developers' productivity. In this work, we report on an empirical study that investigates CI build failures throughout product development at Atlassian. Our quantitative analysis found that the repository dimension is the key factor influencing CI build failures. In addition, our qualitative survey revealed that Atlassian developers perceive CI build failures as challenging issues in practice. Furthermore, we found that the CI build prediction can not only provide proactive insight into CI build failures but also facilitate the team's decision-making. Our study sheds light on the challenges and expectations involved in integrating CI build prediction tools into the Bitbucket environment, providing valuable insights for enhancing CI processes.
Abstract:Centrifuges serve as essential instruments in modern experimental sciences, facilitating a wide range of routine sample processing tasks that necessitate material sedimentation. However, the study for real time observation of the dynamical process during centrifugation has remained elusive. In this study, we developed an innovative Lab_in_a_Tube imaging spectrophotometer that incorporates capabilities of real time image analysis and programmable interruption. This portable LIAT device costs less than 30 US dollars. Based on our knowledge, it is the first Wi Fi camera built_in in common lab centrifuges with active closed_loop control. We tested our LIAT imaging spectrophotometer with solute solvent interaction investigation obtained from lab centrifuges with quantitative data plotting in a real time manner. Single re circulating flow was real time observed, forming the ring shaped pattern during centrifugation. To the best of our knowledge, this is the very first observation of similar phenomena. We developed theoretical simulations for the single particle in a rotating reference frame, which correlated well with experimental results. We also demonstrated the first demonstration to visualize the blood sedimentation process in clinical lab centrifuges. This remarkable cost effectiveness opens up exciting opportunities for centrifugation microbiology research and paves the way for the creation of a network of computational imaging spectrometers at an affordable price for large scale and continuous monitoring of centrifugal processes in general.
Abstract:A major challenge for matching-based depth estimation is to prevent mismatches in occlusion and smooth regions. An effective matching window satisfying three characteristics: texture richness, disparity consistency and anti-occlusion should be able to prevent mismatches to some extent. According to these characteristics, we propose matching entropy in the spatial domain of light field to measure the amount of correct information in a matching window, which provides the criterion for matching window selection. Based on matching entropy regularization, we establish an optimization model for depth estimation with a matching cost fidelity term. To find the optimum, we propose a two-step adaptive matching algorithm. First, the region type is adaptively determined to identify occluding, occluded, smooth and textured regions. Then, the matching entropy criterion is used to adaptively select the size and shape of matching windows, as well as the visible viewpoints. The two-step process can reduce mismatches and redundant calculations by selecting effective matching windows. The experimental results on synthetic and real data show that the proposed method can effectively improve the accuracy of depth estimation in occlusion and smooth regions and has strong robustness for different noise levels. Therefore, high-precision depth estimation from 4D light field data is achieved.
Abstract:Previous methods based on 3DCNN, convLSTM, or optical flow have achieved great success in video salient object detection (VSOD). However, they still suffer from high computational costs or poor quality of the generated saliency maps. To solve these problems, we design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD. Furthermore, previous methods only considered single-frame prediction without temporal association. As a result, the model may not focus on the temporal information sufficiently. Thus, we initially introduce object motion prediction between inter-frame into VSOD. Our model follows standard encoder--decoder architecture. In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames. This approach is more efficient than the optical flow-based methods. In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches. The semantic information of the high-level features is used to fuse the object details in the low-level features, and then the spatiotemporal features are obtained step by step to reconstruct the saliency maps. Moreover, inspired by the boundary supervision commonly used in image salient object detection (ISOD), we design a motion-aware loss for predicting object boundary motion and simultaneously perform multitask learning for VSOD and object motion prediction, which can further facilitate the model to extract spatiotemporal features accurately and maintain the object integrity. Extensive experiments on several datasets demonstrated the effectiveness of our method and can achieve state-of-the-art metrics on some datasets. The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
Abstract:Image cropping aims to find visually appealing crops in an image, which is an important yet challenging task. In this paper, we consider a specific and practical application: human-centric image cropping, which focuses on the depiction of a person. To this end, we propose a human-centric image cropping method with two novel feature designs for the candidate crop: partition-aware feature and content-preserving feature. For partition-aware feature, we divide the whole image into nine partitions based on the human bounding box and treat different partitions in a candidate crop differently conditioned on the human information. For content-preserving feature, we predict a heatmap indicating the important content to be included in a good crop, and extract the geometric relation between the heatmap and a candidate crop. Extensive experiments demonstrate that our method can perform favorably against state-of-the-art image cropping methods on human-centric image cropping task. Code is available at https://github.com/bcmi/Human-Centric-Image-Cropping.
Abstract:Popularity bias is a long-standing challenge in recommender systems. Such a bias exerts detrimental impact on both users and item providers, and many efforts have been dedicated to studying and solving such a bias. However, most existing works situate this problem in a static setting, where the bias is analyzed only for a single round of recommendation with logged data. These works fail to take account of the dynamic nature of real-world recommendation process, leaving several important research questions unanswered: how does the popularity bias evolve in a dynamic scenario? what are the impacts of unique factors in a dynamic recommendation process on the bias? and how to debias in this long-term dynamic process? In this work, we aim to tackle these research gaps. Concretely, we conduct an empirical study by simulation experiments to analyze popularity bias in the dynamic scenario and propose a dynamic debiasing strategy and a novel False Positive Correction method utilizing false positive signals to debias, which show effective performance in extensive experiments.
Abstract:Objective: Quantitative technique based on In-line phase-contrast computed tomography with single scanning attracts more attention in application due to the flexibility of the implementation. However, the quantitative results usually suffer from artifacts and noise, since the phase retrieval and reconstruction are independent ("two-steps") without feedback from the original data. Our goal is to develop a method for material quantitative imaging based on a priori information specifically for the single-scanning data. Method: An iterative method that directly reconstructs the refractive index decrement delta and imaginary beta of the object from observed data ("one-step") within single object-to-detector distance (ODD) scanning. Simultaneously, high-quality quantitative reconstruction results are obtained by using a linear approximation that achieves material decomposition in the iterative process. Results: By comparing the equivalent atomic number of the material decomposition results in experiments, the accuracy of the proposed method is greater than 97.2%. Conclusion: The quantitative reconstruction and decomposition results are effectively improved, and there are feedback and corrections during the iteration, which effectively reduce the impact of noise and errors. Significance: This algorithm has the potential for quantitative imaging research, especially for imaging live samples and human breast preclinical studies.