Abstract:The remarkable performance of the o1 model in complex reasoning demonstrates that test-time computing scaling can further unlock the model's potential, enabling powerful System-2 thinking. However, there is still a lack of comprehensive surveys for test-time computing scaling. We trace the concept of test-time computing back to System-1 models. In System-1 models, test-time computing addresses distribution shifts and improves robustness and generalization through parameter updating, input modification, representation editing, and output calibration. In System-2 models, it enhances the model's reasoning ability to solve complex problems through repeated sampling, self-correction, and tree search. We organize this survey according to the trend of System-1 to System-2 thinking, highlighting the key role of test-time computing in the transition from System-1 models to weak System-2 models, and then to strong System-2 models. We also point out a few possible future directions.
Abstract:Recently machine unlearning (MU) is proposed to remove the imprints of revoked samples from the already trained model parameters, to solve users' privacy concern. Different from the runtime expensive retraining from scratch, there exist two research lines, exact MU and approximate MU with different favorites in terms of accuracy and efficiency. In this paper, we present a novel hybrid strategy on top of them to achieve an overall success. It implements the unlearning operation with an acceptable computation cost, while simultaneously improving the accuracy as much as possible. Specifically, it runs reasonable unlearning techniques by estimating the retraining workloads caused by revocations. If the workload is lightweight, it performs retraining to derive the model parameters consistent with the accurate ones retrained from scratch. Otherwise, it outputs the unlearned model by directly modifying the current parameters, for better efficiency. In particular, to improve the accuracy in the latter case, we propose an optimized version to amend the output model with lightweight runtime penalty. We particularly study the boundary of two approaches in our frameworks to adaptively make the smart selection. Extensive experiments on real datasets validate that our proposals can improve the unlearning efficiency by 1.5$\times$ to 8$\times$ while achieving comparable accuracy.
Abstract:With the rapid advancement of pre-trained large language models (LLMs), recent endeavors have leveraged the capabilities of LLMs in relevance modeling, resulting in enhanced performance. This is usually done through the process of fine-tuning LLMs on specifically annotated datasets to determine the relevance between queries and items. However, there are two limitations when LLMs are naively employed for relevance modeling through fine-tuning and inference. First, it is not inherently efficient for performing nuanced tasks beyond simple yes or no answers, such as assessing search relevance. It may therefore tend to be overconfident and struggle to distinguish fine-grained degrees of relevance (e.g., strong relevance, weak relevance, irrelevance) used in search engines. Second, it exhibits significant performance degradation when confronted with data distribution shift in real-world scenarios. In this paper, we propose a novel Distribution-Aware Robust Learning framework (DaRL) for relevance modeling in Alipay Search. Specifically, we design an effective loss function to enhance the discriminability of LLM-based relevance modeling across various fine-grained degrees of query-item relevance. To improve the generalizability of LLM-based relevance modeling, we first propose the Distribution-Aware Sample Augmentation (DASA) module. This module utilizes out-of-distribution (OOD) detection techniques to actively select appropriate samples that are not well covered by the original training set for model fine-tuning. Furthermore, we adopt a multi-stage fine-tuning strategy to simultaneously improve in-distribution (ID) and OOD performance, bridging the performance gap between them. DaRL has been deployed online to serve the Alipay's insurance product search...
Abstract:Construction robots operate in unstructured construction sites, where effective visual perception is crucial for ensuring safe and seamless operations. However, construction robots often handle large elements and perform tasks across expansive areas, resulting in occluded views from onboard cameras and necessitating the use of multiple environmental cameras to capture the large task space. This study proposes a multi-robot coordination framework in which a team of supervising robots equipped with cameras adaptively adjust their poses to visually perceive the operation of the primary construction robot and its surrounding environment. A viewpoint selection method is proposed to determine each supervising robot's camera viewpoint, optimizing visual coverage and proximity while considering the visibility of the upcoming construction robot operation. A case study on prefabricated wooden frame installation demonstrates the system's feasibility, and further experiments are conducted to validate the performance and robustness of the proposed viewpoint selection method across various settings. This research advances visual perception of robotic construction processes and paves the way for integrating computer vision techniques to enable real-time adaption and responsiveness. Such advancements contribute to the safe and efficient operation of construction robots in inherently unstructured construction sites.
Abstract:Relevance modeling between queries and items stands as a pivotal component in commercial search engines, directly affecting the user experience. Given the remarkable achievements of large language models (LLMs) in various natural language processing (NLP) tasks, LLM-based relevance modeling is gradually being adopted within industrial search systems. Nevertheless, foundational LLMs lack domain-specific knowledge and do not fully exploit the potential of in-context learning. Furthermore, structured item text remains underutilized, and there is a shortage in the supply of corresponding queries and background knowledge. We thereby propose CPRM (Continual Pre-training for Relevance Modeling), a framework designed for the continual pre-training of LLMs to address these issues. Our CPRM framework includes three modules: 1) employing both queries and multi-field item to jointly pre-train for enhancing domain knowledge, 2) applying in-context pre-training, a novel approach where LLMs are pre-trained on a sequence of related queries or items, and 3) conducting reading comprehension on items to produce associated domain knowledge and background information (e.g., generating summaries and corresponding queries) to further strengthen LLMs. Results on offline experiments and online A/B testing demonstrate that our model achieves convincing performance compared to strong baselines.
Abstract:Construction remains one of the most hazardous sectors. Recent advancements in AI, particularly Large Language Models (LLMs), offer promising opportunities for enhancing workplace safety. However, responsible integration of LLMs requires systematic evaluation, as deploying them without understanding their capabilities and limitations risks generating inaccurate information, fostering misplaced confidence, and compromising worker safety. This study evaluates the performance of two widely used LLMs, GPT-3.5 and GPT-4o, across three standardized exams administered by the Board of Certified Safety Professionals (BCSP). Using 385 questions spanning seven safety knowledge areas, the study analyzes the models' accuracy, consistency, and reliability. Results show that both models consistently exceed the BCSP benchmark, with GPT-4o achieving an accuracy rate of 84.6% and GPT-3.5 reaching 73.8%. Both models demonstrate strengths in safety management systems and hazard identification and control, but exhibit weaknesses in science, mathematics, emergency response, and fire prevention. An error analysis identifies four primary limitations affecting LLM performance: lack of knowledge, reasoning flaws, memory issues, and calculation errors. Our study also highlights the impact of prompt engineering strategies, with variations in accuracy reaching 13.5% for GPT-3.5 and 7.9% for GPT-4o. However, no single prompt configuration proves universally effective. This research advances knowledge in three ways: by identifying areas where LLMs can support safety practices and where human oversight remains essential, by offering practical insights into improving LLM implementation through prompt engineering, and by providing evidence-based direction for future research and development. These contributions support the responsible integration of AI in construction safety management toward achieving zero injuries.
Abstract:While NLP models significantly impact our lives, there are rising concerns about privacy invasion. Although federated learning enhances privacy, attackers may recover private training data by exploiting model parameters and gradients. Therefore, protecting against such embedding attacks remains an open challenge. To address this, we propose Subword Embedding from Bytes (SEB) and encode subwords to byte sequences using deep neural networks, making input text recovery harder. Importantly, our method requires a smaller memory with $256$ bytes of vocabulary while keeping efficiency with the same input length. Thus, our solution outperforms conventional approaches by preserving privacy without sacrificing efficiency or accuracy. Our experiments show SEB can effectively protect against embedding-based attacks from recovering original sentences in federated learning. Meanwhile, we verify that SEB obtains comparable and even better results over standard subword embedding methods in machine translation, sentiment analysis, and language modeling with even lower time and space complexity.
Abstract:Stress tracing is an important research domain that supports many applications, such as health care and stress management; and its closest related works are derived from stress detection. However, these existing works cannot well address two important challenges facing stress detection. First, most of these studies involve asking users to wear physiological sensors to detect their stress states, which has a negative impact on the user experience. Second, these studies have failed to effectively utilize multimodal physiological signals, which results in less satisfactory detection results. This paper formally defines the stress tracing problem, which emphasizes the continuous detection of human stress states. A novel deep stress tracing method, named DST, is presented. Note that DST proposes tracing human stress based on physiological signals collected by a noncontact ultrawideband radar, which is more friendly to users when collecting their physiological signals. In DST, a signal extraction module is carefully designed at first to robustly extract multimodal physiological signals from the raw RF data of the radar, even in the presence of body movement. Afterward, a multimodal fusion module is proposed in DST to ensure that the extracted multimodal physiological signals can be effectively fused and utilized. Extensive experiments are conducted on three real-world datasets, including one self-collected dataset and two publicity datasets. Experimental results show that the proposed DST method significantly outperforms all the baselines in terms of tracing human stress states. On average, DST averagely provides a 6.31% increase in detection accuracy on all datasets, compared with the best baselines.
Abstract:Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects millions of people worldwide. Due to the heterogeneous nature of AD, its diagnosis and treatment pose critical challenges. Consequently, there is a growing research interest in identifying homogeneous AD subtypes that can assist in addressing these challenges in recent years. In this study, we aim to identify subtypes of AD that represent distinctive clinical features and underlying pathology by utilizing unsupervised clustering with graph diffusion and similarity learning. We adopted SIMLR, a multi-kernel similarity learning framework, and graph diffusion to perform clustering on a group of 829 patients with AD and mild cognitive impairment (MCI, a prodromal stage of AD) based on their cortical thickness measurements extracted from magnetic resonance imaging (MRI) scans. Although the clustering approach we utilized has not been explored for the task of AD subtyping before, it demonstrated significantly better performance than several commonly used clustering methods. Specifically, we showed the power of graph diffusion in reducing the effects of noise in the subtype detection. Our results revealed five subtypes that differed remarkably in their biomarkers, cognitive status, and some other clinical features. To evaluate the resultant subtypes further, a genetic association study was carried out and successfully identified potential genetic underpinnings of different AD subtypes. Our source code is available at: https://github.com/PennShenLab/AD-SIMLR.
Abstract:Relevance modeling is a critical component for enhancing user experience in search engines, with the primary objective of identifying items that align with users' queries. Traditional models only rely on the semantic congruence between queries and items to ascertain relevance. However, this approach represents merely one aspect of the relevance judgement, and is insufficient in isolation. Even powerful Large Language Models (LLMs) still cannot accurately judge the relevance of a query and an item from a semantic perspective. To augment LLMs-driven relevance modeling, this study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions. The challenge lies in the effective prompting of LLMs to capture dynamic search intentions, which poses several obstacles in real-world relevance scenarios, i.e., the absence of domain-specific knowledge, the inadequacy of an isolated prompt, and the prohibitive costs associated with deploying LLMs. In response, we propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with LLMs effectively. Specifically, we perform the user-driven behavior neighbors retrieval from the daily search logs to obtain domain-specific knowledge in time, retrieving candidates that users consider to meet their expectations. Then, we guide LLMs for relevance modeling by employing advanced prompting techniques that progressively improve the outputs of the LLMs, followed by a progressive aggregation with comprehensive consideration of diverse aspects. For online serving, we have developed an industrial application framework tailored for the deployment of LLMs in relevance modeling. Experiments on real-world industry data and online A/B testing demonstrate our proposal achieves promising performance.