Abstract:Recent years have witnessed remarkable progress in 3D content generation. However, corresponding evaluation methods struggle to keep pace. Automatic approaches have proven challenging to align with human preferences, and the mixed comparison of text- and image-driven methods often leads to unfair evaluations. In this paper, we present a comprehensive framework to better align and evaluate multi-view diffusion models with human preferences. To begin with, we first collect and filter a standardized image prompt set from DALL$\cdot$E and Objaverse, which we then use to generate multi-view assets with several multi-view diffusion models. Through a systematic ranking pipeline on these assets, we obtain a human annotation dataset with 16k expert pairwise comparisons and train a reward model, coined MVReward, to effectively encode human preferences. With MVReward, image-driven 3D methods can be evaluated against each other in a more fair and transparent manner. Building on this, we further propose Multi-View Preference Learning (MVP), a plug-and-play multi-view diffusion tuning strategy. Extensive experiments demonstrate that MVReward can serve as a reliable metric and MVP consistently enhances the alignment of multi-view diffusion models with human preferences.
Abstract:The Euler Elastica (EE) model with surface curvature can generate artifact-free results compared with the traditional total variation regularization model in image processing. However, strong nonlinearity and singularity due to the curvature term in the EE model pose a great challenge for one to design fast and stable algorithms for the EE model. In this paper, we propose a new, fast, hybrid alternating minimization (HALM) algorithm for the EE model based on a bilinear decomposition of the gradient of the underlying image and prove the global convergence of the minimizing sequence generated by the algorithm under mild conditions. The HALM algorithm comprises three sub-minimization problems and each is either solved in the closed form or approximated by fast solvers making the new algorithm highly accurate and efficient. We also discuss the extension of the HALM strategy to deal with general curvature-based variational models, especially with a Lipschitz smooth functional of the curvature. A host of numerical experiments are conducted to show that the new algorithm produces good results with much-improved efficiency compared to other state-of-the-art algorithms for the EE model. As one of the benchmarks, we show that the average running time of the HALM algorithm is at most one-quarter of that of the fast operator-splitting-based Deng-Glowinski-Tai algorithm.
Abstract:Style transfer of 3D faces has gained more and more attention. However, previous methods mainly use images of artistic faces for style transfer while ignoring arbitrary style images such as abstract paintings. To solve this problem, we propose a novel method, namely Face-guided Dual Style Transfer (FDST). To begin with, FDST employs a 3D decoupling module to separate facial geometry and texture. Then we propose a style fusion strategy for facial geometry. Subsequently, we design an optimization-based DDSG mechanism for textures that can guide the style transfer by two style images. Besides the normal style image input, DDSG can utilize the original face input as another style input as the face prior. By this means, high-quality face arbitrary style transfer results can be obtained. Furthermore, FDST can be applied in many downstream tasks, including region-controllable style transfer, high-fidelity face texture reconstruction, large-pose face reconstruction, and artistic face reconstruction. Comprehensive quantitative and qualitative results show that our method can achieve comparable performance. All source codes and pre-trained weights will be released to the public.