Abstract:Large language models(LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning(ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval(RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.
Abstract:Feature attribution methods highlight the important input tokens as explanations to model predictions, which have been widely applied to deep neural networks towards trustworthy AI. However, recent works show that explanations provided by these methods face challenges of being faithful and robust. In this paper, we propose a method with Robustness improvement and Explanation Guided training towards more faithful EXplanations (REGEX) for text classification. First, we improve model robustness by input gradient regularization technique and virtual adversarial training. Secondly, we use salient ranking to mask noisy tokens and maximize the similarity between model attention and feature attribution, which can be seen as a self-training procedure without importing other external information. We conduct extensive experiments on six datasets with five attribution methods, and also evaluate the faithfulness in the out-of-domain setting. The results show that REGEX improves fidelity metrics of explanations in all settings and further achieves consistent gains based on two randomization tests. Moreover, we show that using highlight explanations produced by REGEX to train select-then-predict models results in comparable task performance to the end-to-end method.
Abstract:Lowering the memory requirement in full-parameter training on large models has become a hot research area. MeZO fine-tunes the large language models (LLMs) by just forward passes in a zeroth-order SGD optimizer (ZO-SGD), demonstrating excellent performance with the same GPU memory usage as inference. However, the simulated perturbation stochastic approximation for gradient estimate in MeZO leads to severe oscillations and incurs a substantial time overhead. Moreover, without momentum regularization, MeZO shows severe over-fitting problems. Lastly, the perturbation-irrelevant momentum on ZO-SGD does not improve the convergence rate. This study proposes ZO-AdaMU to resolve the above problems by adapting the simulated perturbation with momentum in its stochastic approximation. Unlike existing adaptive momentum methods, we relocate momentum on simulated perturbation in stochastic gradient approximation. Our convergence analysis and experiments prove this is a better way to improve convergence stability and rate in ZO-SGD. Extensive experiments demonstrate that ZO-AdaMU yields better generalization for LLMs fine-tuning across various NLP tasks than MeZO and its momentum variants.
Abstract:The diversity of tables makes table detection a great challenge, leading to existing models becoming more tedious and complex. Despite achieving high performance, they often overfit to the table style in training set, and suffer from significant performance degradation when encountering out-of-distribution tables in other domains. To tackle this problem, we start from the essence of the table, which is a set of text arranged in rows and columns. Based on this, we propose a novel, light-weighted and robust Table Detection method based on Learning Text Arrangement, namely TDeLTA. TDeLTA takes the text blocks as input, and then models the arrangement of them with a sequential encoder and an attention module. To locate the tables precisely, we design a text-classification task, classifying the text blocks into 4 categories according to their semantic roles in the tables. Experiments are conducted on both the text blocks parsed from PDF and extracted by open-source OCR tools, respectively. Compared to several state-of-the-art methods, TDeLTA achieves competitive results with only 3.1M model parameters on the large-scale public datasets. Moreover, when faced with the cross-domain data under the 0-shot setting, TDeLTA outperforms baselines by a large margin of nearly 7%, which shows the strong robustness and transferability of the proposed model.
Abstract:The excellent generalization, contextual learning, and emergence abilities in the pre-trained large models (PLMs) handle specific tasks without direct training data, making them the better foundation models in the adversarial domain adaptation (ADA) methods to transfer knowledge learned from the source domain to target domains. However, existing ADA methods fail to account for the confounder properly, which is the root cause of the source data distribution that differs from the target domains. This study proposes an adversarial domain adaptation with confounder balancing for PLMs fine-tuning (ADA-CBF). The ADA-CBF includes a PLM as the foundation model for a feature extractor, a domain classifier and a confounder classifier, and they are jointly trained with an adversarial loss. This loss is designed to improve the domain-invariant representation learning by diluting the discrimination in the domain classifier. At the same time, the adversarial loss also balances the confounder distribution among source and unmeasured domains in training. Compared to existing ADA methods, ADA-CBF can correctly identify confounders in domain-invariant features, thereby eliminating the confounder biases in the extracted features from PLMs. The confounder classifier in ADA-CBF is designed as a plug-and-play and can be applied in the confounder measurable, unmeasurable, or partially measurable environments. Empirical results on natural language processing and computer vision downstream tasks show that ADA-CBF outperforms the newest GPT-4, LLaMA2, ViT and ADA methods.
Abstract:Open-domain table question answering aims to provide answers to a question by retrieving and extracting information from a large collection of tables. Existing studies of open-domain table QA either directly adopt text retrieval methods or consider the table structure only in the encoding layer for table retrieval, which may cause syntactical and structural information loss during table scoring. To address this issue, we propose a syntax- and structure-aware retrieval method for the open-domain table QA task. It provides syntactical representations for the question and uses the structural header and value representations for the tables to avoid the loss of fine-grained syntactical and structural information. Then, a syntactical-to-structural aggregator is used to obtain the matching score between the question and a candidate table by mimicking the human retrieval process. Experimental results show that our method achieves the state-of-the-art on the NQ-tables dataset and overwhelms strong baselines on a newly curated open-domain Text-to-SQL dataset.
Abstract:Fashion vision-language pre-training models have shown efficacy for a wide range of downstream tasks. However, general vision-language pre-training models pay less attention to fine-grained domain features, while these features are important in distinguishing the specific domain tasks from general tasks. We propose a method for fine-grained fashion vision-language pre-training based on fashion Symbols and Attributes Prompt (FashionSAP) to model fine-grained multi-modalities fashion attributes and characteristics. Firstly, we propose the fashion symbols, a novel abstract fashion concept layer, to represent different fashion items and to generalize various kinds of fine-grained fashion features, making modelling fine-grained attributes more effective. Secondly, the attributes prompt method is proposed to make the model learn specific attributes of fashion items explicitly. We design proper prompt templates according to the format of fashion data. Comprehensive experiments are conducted on two public fashion benchmarks, i.e., FashionGen and FashionIQ, and FashionSAP gets SOTA performances for four popular fashion tasks. The ablation study also shows the proposed abstract fashion symbols, and the attribute prompt method enables the model to acquire fine-grained semantics in the fashion domain effectively. The obvious performance gains from FashionSAP provide a new baseline for future fashion task research.
Abstract:Fine-grained supervision based on object annotations has been widely used for vision and language pre-training (VLP). However, in real-world application scenarios, aligned multi-modal data is usually in the image-caption format, which only provides coarse-grained supervision. It is cost-expensive to collect object annotations and build object annotation pre-extractor for different scenarios. In this paper, we propose a fine-grained self-supervision signal without object annotations from a replacement perspective. First, we propose a homonym sentence rewriting (HSR) algorithm to provide token-level supervision. The algorithm replaces a verb/noun/adjective/quantifier word of the caption with its homonyms from WordNet. Correspondingly, we propose a replacement vision-language modeling (RVLM) framework to exploit the token-level supervision. Two replaced modeling tasks, i.e., replaced language contrastive (RLC) and replaced language modeling (RLM), are proposed to learn the fine-grained alignment. Extensive experiments on several downstream tasks demonstrate the superior performance of the proposed method.
Abstract:Named Entity Recognition (NER) models capable of Continual Learning (CL) are realistically valuable in areas where entity types continuously increase (e.g., personal assistants). Meanwhile the learning paradigm of NER advances to new patterns such as the span-based methods. However, its potential to CL has not been fully explored. In this paper, we propose SpanKL1, a simple yet effective Span-based model with Knowledge distillation (KD) to preserve memories and multi-Label prediction to prevent conflicts in CL-NER. Unlike prior sequence labeling approaches, the inherently independent modeling in span and entity level with the designed coherent optimization on SpanKL promotes its learning at each incremental step and mitigates the forgetting. Experiments on synthetic CL datasets derived from OntoNotes and Few-NERD show that SpanKL significantly outperforms previous SoTA in many aspects, and obtains the smallest gap from CL to the upper bound revealing its high practiced value.
Abstract:Motivation: Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many state-of-the-art computational methods have been proposed in order to efficiently identify enhancers, learning globally contextual features is still one of the challenges for computational methods. Regarding the similarities between biological sequences and natural language sentences, the novel BERT-based language techniques have been applied to extracting complex contextual features in various computational biology tasks such as protein function/structure prediction. To speed up the research on enhancer identification, it is urgent to construct a BERT-based enhancer language model. Results: In this paper, we propose a multi-scale enhancer identification method (iEnhancer-ELM) based on enhancer language models, which treat enhancer sequences as natural language sentences that are composed of k-mer nucleotides. iEnhancer-ELM can extract contextual information of multi-scale k-mers with positions from raw enhancer sequences. Benefiting from the complementary information of k-mers in multi-scale, we ensemble four iEnhancer-ELM models for improving enhancer identification. The benchmark comparisons show that our model outperforms state-of-the-art methods. By the interpretable attention mechanism, we finds 30 biological patterns, where 40% (12/30) are verified by a widely used motif tool (STREME) and a popular dataset (JASPAR), demonstrating our model has a potential ability to reveal the biological mechanism of enhancer. Availability: The source code are available at https://github.com/chen-bioinfo/iEnhancer-ELM Contact: junjiechen@hit.edu.cn and junjie.chen.hit@gmail.com; Supplementary information: Supplementary data are available at Bioinformatics online.