Abstract:Large Language Models (LLMs) need to adapt to the continuous changes in data, tasks, and user preferences. Due to their massive size and the high costs associated with training, LLMs are not suitable for frequent retraining. However, updates are necessary to keep them in sync with rapidly evolving human knowledge. To address these challenges, this paper proposes the Compression Memory Training (CMT) method, an efficient and effective online adaptation framework for LLMs that features robust knowledge retention capabilities. Inspired by human memory mechanisms, CMT compresses and extracts information from new documents to be stored in a memory bank. When answering to queries related to these new documents, the model aggregates these document memories from the memory bank to better answer user questions. The parameters of the LLM itself do not change during training and inference, reducing the risk of catastrophic forgetting. To enhance the encoding, retrieval, and aggregation of memory, we further propose three new general and flexible techniques, including memory-aware objective, self-matching and top-aggregation. Extensive experiments conducted on three continual learning datasets (i.e., StreamingQA, SQuAD and ArchivalQA) demonstrate that the proposed method improves model adaptability and robustness across multiple base LLMs (e.g., +4.07 EM & +4.19 F1 in StreamingQA with Llama-2-7b).
Abstract:Recent studies in Retrieval-Augmented Generation (RAG) have investigated extracting evidence from retrieved passages to reduce computational costs and enhance the final RAG performance, yet it remains challenging. Existing methods heavily rely on heuristic-based augmentation, encountering several issues: (1) Poor generalization due to hand-crafted context filtering; (2) Semantics deficiency due to rule-based context chunking; (3) Skewed length due to sentence-wise filter learning. To address these issues, we propose a model-based evidence extraction learning framework, SEER, optimizing a vanilla model as an evidence extractor with desired properties through self-aligned learning. Extensive experiments show that our method largely improves the final RAG performance, enhances the faithfulness, helpfulness, and conciseness of the extracted evidence, and reduces the evidence length by 9.25 times. The code will be available at https://github.com/HITsz-TMG/SEER.
Abstract:As we all know, hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect, which inflicts a heavy blow on the widespread application of LLMs. Previous studies have shown that LLMs could confidently state non-existent facts rather than answering ``I don't know''. Therefore, it is necessary to resort to external knowledge to detect and correct the hallucinated content. Since manual detection and correction of factual errors is labor-intensive, developing an automatic end-to-end hallucination-checking approach is indeed a needful thing. To this end, we present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework. It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content. Experimental results on evidence retrieval (0.964 HR@5, 0.908 MRR@5), hallucination detection (0.927-0.951 F1), and hallucination correction (0.973-0.979 approval rate) manifest the great potential of Medico. A video demo of Medico can be found at https://youtu.be/RtsO6CSesBI.
Abstract:Retrieval-Augmented Generation (RAG) prevails in Large Language Models. It mainly consists of retrieval and generation. The retrieval modules (a.k.a. retrievers) aim to find useful information used to facilitate generation modules (a.k.a. generators). As such, generators' performance largely depends on the effectiveness and efficiency of retrievers. However, the retrieval paradigm that we design and use remains flat, which treats the retrieval procedures as a one-off deal with constant granularity. Despite effectiveness, we argue that they suffer from two limitations: (1) flat retrieval exerts a significant burden on one retriever; (2) constant granularity limits the ceiling of retrieval performance. In this work, we propose a progressive retrieval paradigm with coarse-to-fine granularity for RAG, termed FunnelRAG, so as to balance effectiveness and efficiency. Specifically, FunnelRAG establishes a progressive retrieval pipeline by collaborating coarse-to-fine granularity, large-to-small quantity, and low-to-high capacity, which can relieve the burden on one retriever and also promote the ceiling of retrieval performance. Extensive experiments manifest that FunnelRAG achieves comparable retrieval performance while the time overhead is reduced by nearly 40 percent.
Abstract:Large Language Models (LLMs) have exhibited an impressive ability to perform In-Context Learning (ICL) from only a few examples. Recent works have indicated that the functions learned by ICL can be represented through compressed vectors derived from the transformer. However, the working mechanisms and optimization of these vectors are yet to be thoroughly explored. In this paper, we address this gap by presenting a comprehensive analysis of these compressed vectors, drawing parallels to the parameters trained with gradient descent, and introduce the concept of state vector. Inspired by the works on model soup and momentum-based gradient descent, we propose inner and momentum optimization methods that are applied to refine the state vector progressively as test-time adaptation. Moreover, we simulate state vector aggregation in the multiple example setting, where demonstrations comprising numerous examples are usually too lengthy for regular ICL, and further propose a divide-and-conquer aggregation method to address this challenge. We conduct extensive experiments using Llama-2 and GPT-J in both zero-shot setting and few-shot setting. The experimental results show that our optimization method effectively enhances the state vector and achieves the state-of-the-art performance on diverse tasks. Code is available at https://github.com/HITsz-TMG/ICL-State-Vector
Abstract:Large language models have been widely adopted in natural language processing, yet they face the challenge of generating unreliable content. Recent works aim to reduce misinformation and hallucinations by resorting to attribution as a means to provide evidence (i.e., citations). However, current attribution methods usually focus on the retrieval stage and automatic evaluation that neglect mirroring the citation mechanisms in human scholarly writing to bolster credibility. In this paper, we address these challenges by modelling the attribution task as preference learning and introducing an Automatic Preference Optimization (APO) framework. First, we create a curated collection for post-training with 6,330 examples by collecting and filtering from existing datasets. Second, considering the high cost of labelling preference data, we further propose an automatic method to synthesize attribution preference data resulting in 95,263 pairs. Moreover, inspired by the human citation process, we further propose a progressive preference optimization method by leveraging fine-grained information. Extensive experiments on three datasets (i.e., ASQA, StrategyQA, and ELI5) demonstrate that APO achieves state-of-the-art citation F1 with higher answer quality.
Abstract:Instruction tuning (IT) is crucial to tailoring large language models (LLMs) towards human-centric interactions. Recent advancements have shown that the careful selection of a small, high-quality subset of IT data can significantly enhance the performance of LLMs. Despite this, common approaches often rely on additional models or data sets, which increases costs and limits widespread adoption. In this work, we propose a novel approach, termed SelectIT, that capitalizes on the foundational capabilities of the LLM itself. Specifically, we exploit the intrinsic uncertainty present in LLMs to more effectively select high-quality IT data, without the need for extra resources. Furthermore, we introduce a novel IT dataset, the Selective Alpaca, created by applying SelectIT to the Alpaca-GPT4 dataset. Empirical results demonstrate that IT using Selective Alpaca leads to substantial model ability enhancement. The robustness of SelectIT has also been corroborated in various foundation models and domain-specific tasks. Our findings suggest that longer and more computationally intensive IT data may serve as superior sources of IT, offering valuable insights for future research in this area. Data, code, and scripts are freely available at https://github.com/Blue-Raincoat/SelectIT.
Abstract:The present study introduces the knowledge-augmented generator, which is specifically designed to produce information that remains grounded in contextual knowledge, regardless of alterations in the context. Previous research has predominantly focused on examining hallucinations stemming from static input, such as in the domains of summarization or machine translation. However, our investigation delves into the faithfulness of generative question answering in the presence of dynamic knowledge. Our objective is to explore the existence of hallucinations arising from parametric memory when contextual knowledge undergoes changes, while also analyzing the underlying causes for their occurrence. In order to efficiently address this issue, we propose a straightforward yet effective measure for detecting such hallucinations. Intriguingly, our investigation uncovers that all models exhibit a tendency to generate previous answers as hallucinations. To gain deeper insights into the underlying causes of this phenomenon, we conduct a series of experiments that verify the critical role played by context in hallucination, both during training and testing, from various perspectives.
Abstract:Feature attribution methods highlight the important input tokens as explanations to model predictions, which have been widely applied to deep neural networks towards trustworthy AI. However, recent works show that explanations provided by these methods face challenges of being faithful and robust. In this paper, we propose a method with Robustness improvement and Explanation Guided training towards more faithful EXplanations (REGEX) for text classification. First, we improve model robustness by input gradient regularization technique and virtual adversarial training. Secondly, we use salient ranking to mask noisy tokens and maximize the similarity between model attention and feature attribution, which can be seen as a self-training procedure without importing other external information. We conduct extensive experiments on six datasets with five attribution methods, and also evaluate the faithfulness in the out-of-domain setting. The results show that REGEX improves fidelity metrics of explanations in all settings and further achieves consistent gains based on two randomization tests. Moreover, we show that using highlight explanations produced by REGEX to train select-then-predict models results in comparable task performance to the end-to-end method.
Abstract:In this paper, we tackle the significant challenge of temporal knowledge reasoning in Large Language Models (LLMs), an area where such models frequently encounter difficulties. These difficulties often result in the generation of misleading or incorrect information, primarily due to their limited capacity to process evolving factual knowledge and complex temporal logic. In response, we propose a novel, constructivism-based approach that advocates for a paradigm shift in LLM learning towards an active, ongoing process of knowledge synthesis and customization. At the heart of our proposal is the Abstract Reasoning Induction ARI framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based. This division aims to reduce instances of hallucinations and improve LLMs' capacity for integrating abstract methodologies derived from historical data. Our approach achieves remarkable improvements, with relative gains of 29.7\% and 9.27\% on two temporal QA datasets, underscoring its efficacy in advancing temporal reasoning in LLMs. The code will be released at https://github.com/czy1999/ARI.