Abstract:As we all know, hallucinations prevail in Large Language Models (LLMs), where the generated content is coherent but factually incorrect, which inflicts a heavy blow on the widespread application of LLMs. Previous studies have shown that LLMs could confidently state non-existent facts rather than answering ``I don't know''. Therefore, it is necessary to resort to external knowledge to detect and correct the hallucinated content. Since manual detection and correction of factual errors is labor-intensive, developing an automatic end-to-end hallucination-checking approach is indeed a needful thing. To this end, we present Medico, a Multi-source evidence fusion enhanced hallucination detection and correction framework. It fuses diverse evidence from multiple sources, detects whether the generated content contains factual errors, provides the rationale behind the judgment, and iteratively revises the hallucinated content. Experimental results on evidence retrieval (0.964 HR@5, 0.908 MRR@5), hallucination detection (0.927-0.951 F1), and hallucination correction (0.973-0.979 approval rate) manifest the great potential of Medico. A video demo of Medico can be found at https://youtu.be/RtsO6CSesBI.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in general natural language processing tasks but often fall short in complex reasoning tasks. Recent studies have explored human-like problem-solving strategies, such as self-correct, to push further the boundary of single-model reasoning ability. In this work, we let a single model "step outside the box" by engaging multiple models to correct each other. We introduce a multi-agent collaboration strategy that emulates the academic peer review process. Each agent independently constructs its own solution, provides reviews on the solutions of others, and assigns confidence levels to its reviews. Upon receiving peer reviews, agents revise their initial solutions. Extensive experiments on three different types of reasoning tasks show that our collaboration approach delivers superior accuracy across all ten datasets compared to existing methods. Further study demonstrates the effectiveness of integrating confidence in the reviews for math reasoning, and suggests a promising direction for human-mimicking multi-agent collaboration process.
Abstract:As ChatGPT and GPT-4 spearhead the development of Large Language Models (LLMs), more researchers are investigating their performance across various tasks. But more research needs to be done on the interpretability capabilities of LLMs, that is, the ability to generate reasons after an answer has been given. Existing explanation datasets are mostly English-language general knowledge questions, which leads to insufficient thematic and linguistic diversity. To address the language bias and lack of medical resources in generating rationales QA datasets, we present ExplainCPE (over 7k instances), a challenging medical benchmark in Simplified Chinese. We analyzed the errors of ChatGPT and GPT-4, pointing out the limitations of current LLMs in understanding text and computational reasoning. During the experiment, we also found that different LLMs have different preferences for in-context learning. ExplainCPE presents a significant challenge, but its potential for further investigation is promising, and it can be used to evaluate the ability of a model to generate explanations. AI safety and trustworthiness need more attention, and this work makes the first step to explore the medical interpretability of LLMs.The dataset is available at https://github.com/HITsz-TMG/ExplainCPE.