Abstract:Fine-tuning large language models (LLMs) for specific domain tasks has achieved great success in Text-to-SQL tasks. However, these fine-tuned models often face challenges with multi-turn Text-to-SQL tasks caused by ambiguous or unanswerable questions. It is desired to enhance LLMs to handle multiple types of questions in multi-turn Text-to-SQL tasks. To address this, we propose a novel data augmentation method, called QDA-SQL, which generates multiple types of multi-turn Q\&A pairs by using LLMs. In QDA-SQL, we introduce a novel data augmentation method incorporating validation and correction mechanisms to handle complex multi-turn Text-to-SQL tasks. Experimental results demonstrate that QDA-SQL enables fine-tuned models to exhibit higher performance on SQL statement accuracy and enhances their ability to handle complex, unanswerable questions in multi-turn Text-to-SQL tasks. The generation script and test set are released at https://github.com/mcxiaoxiao/QDA-SQL.
Abstract:3D virtual simulation, which generates diversified test scenarios and tests full-stack of Autonomous Driving Systems (ADSes) modules dynamically as a whole, is a promising approach for Safety of The Intended Functionality (SOTIF) ADS testing. However, as different configurations of a test scenario will affect the sensor perceptions and environment interaction, e.g. light pulses emitted by the LiDAR sensor will undergo backscattering and attenuation, which is usually overlooked by existing works, leading to false positives or wrong results. Moreover, the input space of an ADS is extremely large, with infinite number of possible initial scenarios and mutations, along both temporal and spatial domains. This paper proposes a first-principles based sensor modeling and environment interaction scheme, and integrates it into CARLA simulator. With this scheme, a long-overlooked category of adverse weather related corner cases are discovered, along with their root causes. Moreover, a meta-heuristic algorithm is designed based on several empirical insights, which guide both seed scenarios and mutations, significantly reducing the search dimensions of scenarios and enhancing the efficiency of corner case identification. Experimental results show that under identical simulation setups, our algorithm discovers about four times as many corner cases as compared to state-of-the-art work.
Abstract:Lowering the memory requirement in full-parameter training on large models has become a hot research area. MeZO fine-tunes the large language models (LLMs) by just forward passes in a zeroth-order SGD optimizer (ZO-SGD), demonstrating excellent performance with the same GPU memory usage as inference. However, the simulated perturbation stochastic approximation for gradient estimate in MeZO leads to severe oscillations and incurs a substantial time overhead. Moreover, without momentum regularization, MeZO shows severe over-fitting problems. Lastly, the perturbation-irrelevant momentum on ZO-SGD does not improve the convergence rate. This study proposes ZO-AdaMU to resolve the above problems by adapting the simulated perturbation with momentum in its stochastic approximation. Unlike existing adaptive momentum methods, we relocate momentum on simulated perturbation in stochastic gradient approximation. Our convergence analysis and experiments prove this is a better way to improve convergence stability and rate in ZO-SGD. Extensive experiments demonstrate that ZO-AdaMU yields better generalization for LLMs fine-tuning across various NLP tasks than MeZO and its momentum variants.
Abstract:Adversarial attacks can mislead deep learning models to make false predictions by implanting small perturbations to the original input that are imperceptible to the human eye, which poses a huge security threat to the computer vision systems based on deep learning. Physical adversarial attacks, which is more realistic, as the perturbation is introduced to the input before it is being captured and converted to a binary image inside the vision system, when compared to digital adversarial attacks. In this paper, we focus on physical adversarial attacks and further classify them into invasive and non-invasive. Optical-based physical adversarial attack techniques (e.g. using light irradiation) belong to the non-invasive category. As the perturbations can be easily ignored by humans as the perturbations are very similar to the effects generated by a natural environment in the real world. They are highly invisibility and executable and can pose a significant or even lethal threats to real systems. This paper focuses on optical-based physical adversarial attack techniques for computer vision systems, with emphasis on the introduction and discussion of optical-based physical adversarial attack techniques.
Abstract:Swarm learning (SL) is an emerging promising decentralized machine learning paradigm and has achieved high performance in clinical applications. SL solves the problem of a central structure in federated learning by combining edge computing and blockchain-based peer-to-peer network. While there are promising results in the assumption of the independent and identically distributed (IID) data across participants, SL suffers from performance degradation as the degree of the non-IID data increases. To address this problem, we propose a generative augmentation framework in swarm learning called SL-GAN, which augments the non-IID data by generating the synthetic data from participants. SL-GAN trains generators and discriminators locally, and periodically aggregation via a randomly elected coordinator in SL network. Under the standard assumptions, we theoretically prove the convergence of SL-GAN using stochastic approximations. Experimental results demonstrate that SL-GAN outperforms state-of-art methods on three real world clinical datasets including Tuberculosis, Leukemia, COVID-19.
Abstract:Non-independent and identically distributed (non-IID) data is a key challenge in federated learning (FL), which usually hampers the optimization convergence and the performance of FL. Existing data augmentation methods based on federated generative models or raw data sharing strategies for solving the non-IID problem still suffer from low performance, privacy protection concerns, and high communication overhead in decentralized tabular data. To tackle these challenges, we propose a federated tabular data augmentation method, named Fed-TDA. The core idea of Fed-TDA is to synthesize tabular data for data augmentation using some simple statistics (e.g., distributions of each column and global covariance). Specifically, we propose the multimodal distribution transformation and inverse cumulative distribution mapping respectively synthesize continuous and discrete columns in tabular data from a noise according to the pre-learned statistics. Furthermore, we theoretically analyze that our Fed-TDA not only preserves data privacy but also maintains the distribution of the original data and the correlation between columns. Through extensive experiments on five real-world tabular datasets, we demonstrate the superiority of Fed-TDA over the state-of-the-art in test performance and communication efficiency.
Abstract:Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational costs. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm MixEncoder for efficient sentence pair modeling. MixEncoder involves a light-weight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our MixEncoder can speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models.