Abstract:Although face recognition starts to play an important role in our daily life, we need to pay attention that data-driven face recognition vision systems are vulnerable to adversarial attacks. However, the current two categories of adversarial attacks, namely digital attacks and physical attacks both have drawbacks, with the former ones impractical and the latter one conspicuous, high-computational and inexecutable. To address the issues, we propose a practical, executable, inconspicuous and low computational adversarial attack based on LED illumination modulation. To fool the systems, the proposed attack generates imperceptible luminance changes to human eyes through fast intensity modulation of scene LED illumination and uses the rolling shutter effect of CMOS image sensors in face recognition systems to implant luminance information perturbation to the captured face images. In summary,we present a denial-of-service (DoS) attack for face detection and a dodging attack for face verification. We also evaluate their effectiveness against well-known face detection models, Dlib, MTCNN and RetinaFace , and face verification models, Dlib, FaceNet,and ArcFace.The extensive experiments show that the success rates of DoS attacks against face detection models reach 97.67%, 100%, and 100%, respectively, and the success rates of dodging attacks against all face verification models reach 100%.
Abstract:Adversarial attacks can mislead deep learning models to make false predictions by implanting small perturbations to the original input that are imperceptible to the human eye, which poses a huge security threat to the computer vision systems based on deep learning. Physical adversarial attacks, which is more realistic, as the perturbation is introduced to the input before it is being captured and converted to a binary image inside the vision system, when compared to digital adversarial attacks. In this paper, we focus on physical adversarial attacks and further classify them into invasive and non-invasive. Optical-based physical adversarial attack techniques (e.g. using light irradiation) belong to the non-invasive category. As the perturbations can be easily ignored by humans as the perturbations are very similar to the effects generated by a natural environment in the real world. They are highly invisibility and executable and can pose a significant or even lethal threats to real systems. This paper focuses on optical-based physical adversarial attack techniques for computer vision systems, with emphasis on the introduction and discussion of optical-based physical adversarial attack techniques.