Abstract:We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
Abstract:Recently, Large Language Models (LLMs) have been widely studied by researchers for their roles in various downstream NLP tasks. As a fundamental task in the NLP field, Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences. Previous studies have shown that LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus. To promote the CGEC field to better adapt to the era of LLMs, we rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC. Considering the rich grammatical knowledge stored in LLMs and their powerful semantic understanding capabilities, we utilize LLMs as explainers to provide explanation information for the CGEC small models during error correction to enhance performance. We also use LLMs as evaluators to bring more reasonable CGEC evaluations, thus alleviating the troubles caused by the subjectivity of the CGEC task. In particular, our work is also an active exploration of how LLMs and small models better collaborate in downstream tasks. Extensive experiments and detailed analyses on widely used datasets verify the effectiveness of our thinking intuition and the proposed methods.
Abstract:Chinese Spelling Correction (CSC) aims to detect and correct spelling errors in given sentences. Recently, multi-domain CSC has gradually attracted the attention of researchers because it is more practicable. In this paper, we focus on the key flaw of the CSC model when adapting to multi-domain scenarios: the tendency to forget previously acquired knowledge upon learning new domain-specific knowledge (i.e., catastrophic forgetting). To address this, we propose a novel model-agnostic Multi-stage Knowledge Transfer (MKT) framework, which utilizes a continuously evolving teacher model for knowledge transfer in each domain, rather than focusing solely on new domain knowledge. It deserves to be mentioned that we are the first to apply continual learning methods to the multi-domain CSC task. Experiments prove the effectiveness of our proposed method, and further analyses demonstrate the importance of overcoming catastrophic forgetting for improving the model performance.
Abstract:Recently, Large Language Models (LLMs) have made remarkable evolutions in language understanding and generation. Following this, various benchmarks for measuring all kinds of capabilities of LLMs have sprung up. In this paper, we challenge the reasoning and understanding abilities of LLMs by proposing a FaLlacy Understanding Benchmark (FLUB) containing cunning questions that are easy for humans to understand but difficult for models to grasp. Specifically, the cunning questions that FLUB focuses on mainly consist of the tricky, humorous, and misleading questions collected from the real internet environment. And we design three tasks with increasing difficulty in the FLUB benchmark to evaluate the fallacy understanding ability of LLMs. Based on FLUB, we investigate the performance of multiple representative and advanced LLMs, reflecting our FLUB is challenging and worthy of more future study. Interesting discoveries and valuable insights are achieved in our extensive experiments and detailed analyses. We hope that our benchmark can encourage the community to improve LLMs' ability to understand fallacies.
Abstract:The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
Abstract:Large Language Models (LLMs) pre-trained on massive corpora have exhibited remarkable performance on various NLP tasks. However, applying these models to specific domains still poses significant challenges, such as lack of domain knowledge, limited capacity to leverage domain knowledge and inadequate adaptation to domain-specific data formats. Considering the exorbitant cost of training LLMs from scratch and the scarcity of annotated data within particular domains, in this work, we focus on domain-specific continual pre-training of LLMs using E-commerce domain as an exemplar. Specifically, we explore the impact of continual pre-training on LLMs employing unlabeled general and E-commercial corpora. Furthermore, we design a mixing strategy among different data sources to better leverage E-commercial semi-structured data. We construct multiple tasks to assess LLMs' few-shot In-context Learning ability and their zero-shot performance after instruction tuning in E-commerce domain. Experimental results demonstrate the effectiveness of continual pre-training of E-commerce LLMs and the efficacy of our devised data mixing strategy.
Abstract:Recently, instruction-following Large Language Models (LLMs) , represented by ChatGPT, have exhibited exceptional performance in general Natural Language Processing (NLP) tasks. However, the unique characteristics of E-commerce data pose significant challenges to general LLMs. An LLM tailored specifically for E-commerce scenarios, possessing robust cross-dataset/task generalization capabilities, is a pressing necessity. To solve this issue, in this work, we proposed the first e-commerce instruction dataset EcomInstruct, with a total of 2.5 million instruction data. EcomInstruct scales up the data size and task diversity by constructing atomic tasks with E-commerce basic data types, such as product information, user reviews. Atomic tasks are defined as intermediate tasks implicitly involved in solving a final task, which we also call Chain-of-Task tasks. We developed EcomGPT with different parameter scales by training the backbone model BLOOMZ with the EcomInstruct. Benefiting from the fundamental semantic understanding capabilities acquired from the Chain-of-Task tasks, EcomGPT exhibits excellent zero-shot generalization capabilities. Extensive experiments and human evaluations demonstrate that EcomGPT outperforms ChatGPT in term of cross-dataset/task generalization on E-commerce tasks.
Abstract:With the continuous evolution and refinement of LLMs, they are endowed with impressive logical reasoning or vertical thinking capabilities. But can they think out of the box? Do they possess proficient lateral thinking abilities? Following the setup of Lateral Thinking Puzzles, we propose a novel evaluation benchmark, LatEval, which assesses the model's lateral thinking within an interactive framework. In our benchmark, we challenge LLMs with 2 aspects: the quality of questions posed by the model and the model's capability to integrate information for problem-solving. We find that nearly all LLMs struggle with employing lateral thinking during interactions. For example, even the most advanced model, GPT-4, exhibits the advantage to some extent, yet still maintain a noticeable gap when compared to human. This evaluation benchmark provides LLMs with a highly challenging and distinctive task that is crucial to an effective AI assistant.
Abstract:Recently, the development and progress of Large Language Models (LLMs) have amazed the entire Artificial Intelligence community. As an outstanding representative of LLMs and the foundation model that set off this wave of research on LLMs, ChatGPT has attracted more and more researchers to study its capabilities and performance on various downstream Natural Language Processing (NLP) tasks. While marveling at ChatGPT's incredible performance on kinds of tasks, we notice that ChatGPT also has excellent multilingual processing capabilities, such as Chinese. To explore the Chinese processing ability of ChatGPT, we focus on Chinese Text Correction, a fundamental and challenging Chinese NLP task. Specifically, we evaluate ChatGPT on the Chinese Grammatical Error Correction (CGEC) and Chinese Spelling Check (CSC) tasks, which are two main Chinese Text Correction scenarios. From extensive analyses and comparisons with previous state-of-the-art fine-tuned models, we empirically find that the ChatGPT currently has both amazing performance and unsatisfactory behavior for Chinese Text Correction. We believe our findings will promote the landing and application of LLMs in the Chinese NLP community.
Abstract:Chinese Text Error Correction (CTEC) aims to detect and correct errors in the input text, which benefits human's daily life and various downstream tasks. Recent approaches mainly employ Pre-trained Language Models (PLMs) to resolve CTEC task and achieve tremendous success. However, previous approaches suffer from issues of over-correction and under-correction, and the former is especially conspicuous in the precision-critical CTEC task. To mitigate the issue of overcorrection, we propose a novel model-agnostic progressive multitask learning framework for CTEC, named ProTEC, which guides a CTEC model to learn the task from easy to difficult. We divide CTEC task into three sub-tasks from easy to difficult: Error Detection, Error Type Identification, and Correction Result Generation. During the training process, ProTEC guides the model to learn text error correction progressively by incorporating these sub-tasks into a multi-task training objective. During the inference process, the model completes these sub-tasks in turn to generate the correction results. Extensive experiments and detailed analyses fully demonstrate the effectiveness and efficiency of our proposed framework.