Abstract:Audiovisual Automatic Speech Recognition (AV-ASR) aims to improve speech recognition accuracy by leveraging visual signals. It is particularly challenging in unconstrained real-world scenarios across various domains due to noisy acoustic environments, spontaneous speech, and the uncertain use of visual information. Most previous works fine-tune audio-only ASR models on audiovisual datasets, optimizing them for conventional ASR objectives. However, they often neglect visual features and common errors in unconstrained video scenarios. In this paper, we propose using a preference optimization strategy to improve speech recognition accuracy for real-world videos. First, we create preference data via simulating common errors that occurred in AV-ASR from two focals: manipulating the audio or vision input and rewriting the output transcript. Second, we propose BPO-AVASR, a Bifocal Preference Optimization method to improve AV-ASR models by leveraging both input-side and output-side preference. Extensive experiments demonstrate that our approach significantly improves speech recognition accuracy across various domains, outperforming previous state-of-the-art models on real-world video speech recognition.
Abstract:Multi-person interactive motion generation, a critical yet under-explored domain in computer character animation, poses significant challenges such as intricate modeling of inter-human interactions beyond individual motions and generating two motions with huge differences from one text condition. Current research often employs separate module branches for individual motions, leading to a loss of interaction information and increased computational demands. To address these challenges, we propose a novel, unified approach that models multi-person motions and their interactions within a single latent space. Our approach streamlines the process by treating interactive motions as an integrated data point, utilizing a Variational AutoEncoder (VAE) for compression into a unified latent space, and performing a diffusion process within this space, guided by the natural language conditions. Experimental results demonstrate our method's superiority over existing approaches in generation quality, performing text condition in particular when motions have significant asymmetry, and accelerating the generation efficiency while preserving high quality.
Abstract:Retrieval Augmented Generation (RAG) system is important in domains such as e-commerce, which has many long-tail entities and frequently updated information. Most existing works adopt separate modules for retrieval and generation, which may be suboptimal since the retrieval task and the generation task cannot benefit from each other to improve performance. We propose a novel Backbone Shared RAG framework (BSharedRAG). It first uses a domain-specific corpus to continually pre-train a base model as a domain-specific backbone model and then trains two plug-and-play Low-Rank Adaptation (LoRA) modules based on the shared backbone to minimize retrieval and generation losses respectively. Experimental results indicate that our proposed BSharedRAG outperforms baseline models by 5% and 13% in Hit@3 upon two datasets in retrieval evaluation and by 23% in terms of BLEU-3 in generation evaluation. Our codes, models, and dataset are available at https://bsharedrag.github.io.
Abstract:Neural codecs have become crucial to recent speech and audio generation research. In addition to signal compression capabilities, discrete codecs have also been found to enhance downstream training efficiency and compatibility with autoregressive language models. However, as extensive downstream applications are investigated, challenges have arisen in ensuring fair comparisons across diverse applications. To address these issues, we present a new open-source platform ESPnet-Codec, which is built on ESPnet and focuses on neural codec training and evaluation. ESPnet-Codec offers various recipes in audio, music, and speech for training and evaluation using several widely adopted codec models. Together with ESPnet-Codec, we present VERSA, a standalone evaluation toolkit, which provides a comprehensive evaluation of codec performance over 20 audio evaluation metrics. Notably, we demonstrate that ESPnet-Codec can be integrated into six ESPnet tasks, supporting diverse applications.
Abstract:Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
Abstract:Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining the original abilities, we design specific data mixture and curriculum strategies by utilizing existing datasets and synthesizing high-quality datasets. Specifically, we synthesize multidisciplinary scientific question and answer (QA) pairs based on related web pages, and subsequently incorporate these synthetic data to improve the scientific reasoning ability of Llama-3. We refer to the model after CPT as Llama-3-SynE (Synthetic data Enhanced Llama-3). We also present the tuning experiments with a relatively small model -- TinyLlama, and employ the derived findings to train the backbone model. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of the backbone models, including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval), without hurting the original capacities. Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.
Abstract:Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billion parameters. The base model of YuLan is pre-trained on approximately $1.7$T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.
Abstract:Modeling a generalized visuomotor policy has been a longstanding challenge for both computer vision and robotics communities. Existing approaches often fail to efficiently leverage cross-dataset resources or rely on heavy Vision-Language models, which require substantial computational resources, thereby limiting their multi-task performance and application potential. In this paper, we introduce a novel paradigm that effectively utilizes latent modeling of manipulation skills and an efficient visuomotor latent diffusion policy, which enhances the utilizing of existing cross-embodiment and cross-environment datasets, thereby improving multi-task capabilities. Our methodology consists of two decoupled phases: action modeling and policy modeling. Firstly, we introduce a task-agnostic, embodiment-aware trajectory latent autoencoder for unified action skills modeling. This step condenses action data and observation into a condensed latent space, effectively benefiting from large-scale cross-datasets. Secondly, we propose to use a visuomotor latent diffusion policy that recovers target skill latent from noises for effective task execution. We conducted extensive experiments on two widely used benchmarks, and the results demonstrate the effectiveness of our proposed paradigms on multi-tasking and pre-training. Code is available at https://github.com/AlbertTan404/RoLD.
Abstract:Recent advancements in language models have significantly enhanced performance in multiple speech-related tasks. Existing speech language models typically utilize task-dependent prompt tokens to unify various speech tasks in a single model. However, this design omits the intrinsic connections between different speech tasks, which can potentially boost the performance of each task. In this work, we propose a novel decoder-only speech language model, SpeechComposer, that can unify common speech tasks by composing a fixed set of prompt tokens. Built upon four primary tasks -- speech synthesis, speech recognition, speech language modeling, and text language modeling -- SpeechComposer can easily extend to more speech tasks via compositions of well-designed prompt tokens, like voice conversion and speech enhancement. The unification of prompt tokens also makes it possible for knowledge sharing among different speech tasks in a more structured manner. Experimental results demonstrate that our proposed SpeechComposer can improve the performance of both primary tasks and composite tasks, showing the effectiveness of the shared prompt tokens. Remarkably, the unified decoder-only model achieves a comparable and even better performance than the baselines which are expert models designed for single tasks.
Abstract:Visual instruction tuning is an essential approach to improving the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs). A surge of visual instruction datasets with various focuses and characteristics have been proposed recently, enabling MLLMs to achieve surprising results on evaluation benchmarks. To develop more capable MLLMs, in this paper, we aim to investigate a more fundamental question: ``what makes for good visual instructions?''. By conducting a comprehensive empirical study, we find that instructions focused on complex visual reasoning tasks are particularly effective in improving the performance of MLLMs on evaluation benchmarks. Building upon this finding, we design a systematic approach to automatically creating high-quality complex visual reasoning instructions. Our approach employs a synthesis-complication-reformulation paradigm, leveraging multiple stages to gradually increase the complexity of the instructions while guaranteeing quality. Based on this approach, we create the synthetic visual reasoning instruction dataset consisting of 32K examples, namely ComVint, and fine-tune four MLLMs on it. Experimental results demonstrate that our dataset consistently enhances the performance of all the compared MLLMs, e.g., improving the performance of MiniGPT-4 and BLIP-2 on MME-Cognition by 32.6% and 28.8%, respectively. Our code and data are publicly available at the link: https://github.com/RUCAIBox/ComVint.