Abstract:Vehicle re-identification is a challenging task due to high intra-class variances and small inter-class variances. In this work, we focus on the failure cases caused by similar background and shape. They pose serve bias on similarity, making it easier to neglect fine-grained information. To reduce the bias, we propose an approach named VOC-ReID, taking the triplet vehicle-orientation-camera as a whole and reforming background/shape similarity as camera/orientation re-identification. At first, we train models for vehicle, orientation and camera re-identification respectively. Then we use orientation and camera similarity as penalty to get final similarity. Besides, we propose a high performance baseline boosted by bag of tricks and weakly supervised data augmentation. Our algorithm achieves the second place in vehicle re-identification at the NVIDIA AI City Challenge 2020.
Abstract:Scene text detection attracts much attention in computer vision, because it can be widely used in many applications such as real-time text translation, automatic information entry, blind person assistance, robot sensing and so on. Though many methods have been proposed for horizontal and oriented texts, detecting irregular shape texts such as curved texts is still a challenging problem. To solve the problem, we propose a robust scene text detection method with adaptive text region representation. Given an input image, a text region proposal network is first used for extracting text proposals. Then, these proposals are verified and refined with a refinement network. Here, recurrent neural network based adaptive text region representation is proposed for text region refinement, where a pair of boundary points are predicted each time step until no new points are found. In this way, text regions of arbitrary shapes are detected and represented with adaptive number of boundary points. This gives more accurate description of text regions. Experimental results on five benchmarks, namely, CTW1500, TotalText, ICDAR2013, ICDAR2015 and MSRATD500, show that the proposed method achieves state-of-the-art in scene text detection.
Abstract:In this paper, we investigate the knowledge distillation strategy for training small semantic segmentation networks by making use of large networks. We start from the straightforward scheme, pixel-wise distillation, which applies the distillation scheme adopted for image classification and performs knowledge distillation for each pixel separately. We further propose to distill the structured knowledge from large networks to small networks, which is motivated by that semantic segmentation is a structured prediction problem. We study two structured distillation schemes: (i) pair-wise distillation that distills the pairwise similarities, and (ii) holistic distillation that uses GAN to distill holistic knowledge. The effectiveness of our knowledge distillation approaches is demonstrated by extensive experiments on three scene parsing datasets: Cityscapes, Camvid and ADE20K.
Abstract:Scene text detection is a challenging problem in computer vision. In this paper, we propose a novel text detection network based on prevalent object detection frameworks. In order to obtain stronger semantic feature, we adopt ResNet as feature extraction layers and exploit multi-level feature by combining hierarchical convolutional networks. A vertical proposal mechanism is utilized to avoid proposal classification, while regression layer remains working to improve localization accuracy. Our approach evaluated on ICDAR2013 dataset achieves F-measure of 0.91, which outperforms previous state-of-the-art results in scene text detection.
Abstract:In this paper, we propose a novel method called Rotational Region CNN (R2CNN) for detecting arbitrary-oriented texts in natural scene images. The framework is based on Faster R-CNN [1] architecture. First, we use the Region Proposal Network (RPN) to generate axis-aligned bounding boxes that enclose the texts with different orientations. Second, for each axis-aligned text box proposed by RPN, we extract its pooled features with different pooled sizes and the concatenated features are used to simultaneously predict the text/non-text score, axis-aligned box and inclined minimum area box. At last, we use an inclined non-maximum suppression to get the detection results. Our approach achieves competitive results on text detection benchmarks: ICDAR 2015 and ICDAR 2013.
Abstract:Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. In this paper, we investigate the sketch-to-image synthesis problem by using conditional generative adversarial networks (cGAN). We propose the auto-painter model which can automatically generate compatible colors for a sketch. The new model is not only capable of painting hand-draw sketch with proper colors, but also allowing users to indicate preferred colors. Experimental results on two sketch datasets show that the auto-painter performs better that existing image-to-image methods.