Abstract:Retrieval Augmented Generation (RAG) system is important in domains such as e-commerce, which has many long-tail entities and frequently updated information. Most existing works adopt separate modules for retrieval and generation, which may be suboptimal since the retrieval task and the generation task cannot benefit from each other to improve performance. We propose a novel Backbone Shared RAG framework (BSharedRAG). It first uses a domain-specific corpus to continually pre-train a base model as a domain-specific backbone model and then trains two plug-and-play Low-Rank Adaptation (LoRA) modules based on the shared backbone to minimize retrieval and generation losses respectively. Experimental results indicate that our proposed BSharedRAG outperforms baseline models by 5% and 13% in Hit@3 upon two datasets in retrieval evaluation and by 23% in terms of BLEU-3 in generation evaluation. Our codes, models, and dataset are available at https://bsharedrag.github.io.
Abstract:Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot.
Abstract:Engaging video comments play an important role in video social media, as they are the carrier of feelings, thoughts, or humor of the audience. Preliminary works have made initial exploration for video comment generation by adopting caption-style encoder-decoder models. However, comment generation presents some unique challenges distinct from caption generation, which makes these methods somewhat less effective at generating engaging comments. In contrast to the objective and descriptive nature of captions, comments tend to be inherently subjective, making it hard to quantify and evaluate the engagement of comments. Furthermore, the scarcity of truly engaging comments brings difficulty to collecting enough high-quality training examples. In this paper, we propose ViCo with three novel designs to tackle the above challenges for generating engaging Video Comments. Firstly, to quantify the engagement of comments, we utilize the number of "likes" each comment receives as a proxy of human preference after an appropriate debiasing procedure. Secondly, to automatically evaluate the engagement of comments, we train a reward model to align its judgment to the above proxy. Our user studies indicate that this reward model effectively aligns with human judgments. Lastly, to alleviate the scarcity of high-quality comments, an initial generator is trained on readily available but noisy data to generate comments. Then the reward model is employed to offer feedback on the generated comments, thus optimizing the initial generator. To facilitate the research of video commenting, we collect a large video comment-dataset (ViCo-20k) with rich metadata from a popular video website. Experiments on ViCo-20k show that the comments generated by our ViCo model exhibit the best performance in terms of both quantitative and qualitative results, particularly when engagement is considered.
Abstract:A storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards however remains challenging which not only requires association between high-level texts and images, but also demands for long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images to visualize the text synopsis. We construct a MovieNet-TeViS benchmark based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes that are manually selected from corresponding movies by considering both relevance and cinematic coherence. We also present an encoder-decoder baseline for the task. The model uses a pretrained vision-and-language model to improve high-level text-image matching. To improve coherence in long-term shots, we further propose to pre-train the decoder on large-scale movie frames without text. Experimental results demonstrate that our proposed model significantly outperforms other models to create text-relevant and coherent storyboards. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work.
Abstract:Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks. Previous studies of video-language pretraining mainly focus on short-form videos (i.e., within 30 seconds) and sentences, leaving long-form video-language pre-training rarely explored. Directly learning representation from long-form videos and language may benefit many long-form video-language understanding tasks. However, it is challenging due to the difficulty of modeling long-range relationships and the heavy computational burden caused by more frames. In this paper, we introduce a Long-Form VIdeo-LAnguage pre-training model (LF-VILA) and train it on a large-scale long-form video and paragraph dataset constructed from an existing public dataset. To effectively capture the rich temporal dynamics and to better align video and language in an efficient end-to-end manner, we introduce two novel designs in our LF-VILA model. We first propose a Multimodal Temporal Contrastive (MTC) loss to learn the temporal relation across different modalities by encouraging fine-grained alignment between long-form videos and paragraphs. Second, we propose a Hierarchical Temporal Window Attention (HTWA) mechanism to effectively capture long-range dependency while reducing computational cost in Transformer. We fine-tune the pre-trained LF-VILA model on seven downstream long-form video-language understanding tasks of paragraph-to-video retrieval and long-form video question-answering, and achieve new state-of-the-art performances. Specifically, our model achieves 16.1% relative improvement on ActivityNet paragraph-to-video retrieval task and 2.4% on How2QA task, respectively. We release our code, dataset, and pre-trained models at https://github.com/microsoft/XPretrain.
Abstract:The pre-trained image-text models, like CLIP, have demonstrated the strong power of vision-language representation learned from a large scale of web-collected image-text data. In light of the well-learned visual features, some existing works transfer image representation to video domain and achieve good results. However, how to utilize image-language pre-trained model (e.g., CLIP) for video-language pre-training (post-pretraining) is still under explored. In this paper, we investigate two questions: 1) what are the factors hindering post-pretraining CLIP to further improve the performance on video-language tasks? and 2) how to mitigate the impact of these factors? Through a series of comparative experiments and analyses, we find that the data scale and domain gap between language sources have great impacts. Motivated by these, we propose a Omnisource Cross-modal Learning method equipped with a Video Proxy mechanism on the basis of CLIP, namely CLIP-ViP. Extensive results show that our approach improves the performance of CLIP on video-text retrieval by a large margin. Our model also achieves SOTA results on a variety of datasets, including MSR-VTT, DiDeMo, LSMDC, and ActivityNet. We will release our code and pre-trained CLIP-ViP models at https://github.com/microsoft/XPretrain/tree/main/CLIP-ViP.
Abstract:We study joint video and language (VL) pre-training to enable cross-modality learning and benefit plentiful downstream VL tasks. Existing works either extract low-quality video features or learn limited text embedding, while neglecting that high-resolution videos and diversified semantics can significantly improve cross-modality learning. In this paper, we propose a novel High-resolution and Diversified VIdeo-LAnguage pre-training model (HD-VILA) for many visual tasks. In particular, we collect a large dataset with two distinct properties: 1) the first high-resolution dataset including 371.5k hours of 720p videos, and 2) the most diversified dataset covering 15 popular YouTube categories. To enable VL pre-training, we jointly optimize the HD-VILA model by a hybrid Transformer that learns rich spatiotemporal features, and a multimodal Transformer that enforces interactions of the learned video features with diversified texts. Our pre-training model achieves new state-of-the-art results in 10 VL understanding tasks and 2 more novel text-to-visual generation tasks. For example, we outperform SOTA models with relative increases of 38.5% R@1 in zero-shot MSR-VTT text-to-video retrieval task, and 53.6% in high-resolution dataset LSMDC. The learned VL embedding is also effective in generating visually pleasing and semantically relevant results in text-to-visual manipulation and super-resolution tasks.
Abstract:Multi-modal pre-training models have been intensively explored to bridge vision and language in recent years. However, most of them explicitly model the cross-modal interaction between image-text pairs, by assuming that there exists strong semantic correlation between the text and image modalities. Since this strong assumption is often invalid in real-world scenarios, we choose to implicitly model the cross-modal correlation for large-scale multi-modal pre-training, which is the focus of the Chinese project `WenLan' led by our team. Specifically, with the weak correlation assumption over image-text pairs, we propose a two-tower pre-training model called BriVL within the cross-modal contrastive learning framework. Unlike OpenAI CLIP that adopts a simple contrastive learning method, we devise a more advanced algorithm by adapting the latest method MoCo into the cross-modal scenario. By building a large queue-based dictionary, our BriVL can incorporate more negative samples in limited GPU resources. We further construct a large Chinese multi-source image-text dataset called RUC-CAS-WenLan for pre-training our BriVL model. Extensive experiments demonstrate that the pre-trained BriVL model outperforms both UNITER and OpenAI CLIP on various downstream tasks.