INRIA
Abstract:Generalizing language-conditioned robotic policies to new tasks remains a significant challenge, hampered by the lack of suitable simulation benchmarks. In this paper, we address this gap by introducing GemBench, a novel benchmark to assess generalization capabilities of vision-language robotic manipulation policies. GemBench incorporates seven general action primitives and four levels of generalization, spanning novel placements, rigid and articulated objects, and complex long-horizon tasks. We evaluate state-of-the-art approaches on GemBench and also introduce a new method. Our approach 3D-LOTUS leverages rich 3D information for action prediction conditioned on language. While 3D-LOTUS excels in both efficiency and performance on seen tasks, it struggles with novel tasks. To address this, we present 3D-LOTUS++, a framework that integrates 3D-LOTUS's motion planning capabilities with the task planning capabilities of LLMs and the object grounding accuracy of VLMs. 3D-LOTUS++ achieves state-of-the-art performance on novel tasks of GemBench, setting a new standard for generalization in robotic manipulation. The benchmark, codes and trained models are available at \url{https://www.di.ens.fr/willow/research/gembench/}.
Abstract:With the growing popularity of RAG, the capabilities of embedding models are gaining increasing attention. Embedding models are primarily trained through contrastive loss learning, with negative examples being a key component. Previous work has proposed various hard negative mining strategies, but these strategies are typically employed as preprocessing steps. In this paper, we propose the conan-embedding model, which maximizes the utilization of more and higher-quality negative examples. Specifically, since the model's ability to handle preprocessed negative examples evolves during training, we propose dynamic hard negative mining method to expose the model to more challenging negative examples throughout the training process. Secondly, contrastive learning requires as many negative examples as possible but is limited by GPU memory constraints. Therefore, we use a Cross-GPU balancing Loss to provide more negative examples for embedding training and balance the batch size across multiple tasks. Moreover, we also discovered that the prompt-response pairs from LLMs can be used for embedding training. Our approach effectively enhances the capabilities of embedding models, currently ranking first on the Chinese leaderboard of Massive text embedding benchmark
Abstract:In this work, we aim to learn a unified vision-based policy for a multi-fingered robot hand to manipulate different objects in diverse poses. Though prior work has demonstrated that human videos can benefit policy learning, performance improvement has been limited by physically implausible trajectories extracted from videos. Moreover, reliance on privileged object information such as ground-truth object states further limits the applicability in realistic scenarios. To address these limitations, we propose a new framework ViViDex to improve vision-based policy learning from human videos. It first uses reinforcement learning with trajectory guided rewards to train state-based policies for each video, obtaining both visually natural and physically plausible trajectories from the video. We then rollout successful episodes from state-based policies and train a unified visual policy without using any privileged information. A coordinate transformation method is proposed to significantly boost the performance. We evaluate our method on three dexterous manipulation tasks and demonstrate a large improvement over state-of-the-art algorithms.
Abstract:This work addresses the 3D situated reasoning task which aims to answer questions given egocentric observations in a 3D environment. The task remains challenging as it requires comprehensive 3D perception and complex reasoning skills. End-to-end models trained on supervised data for 3D situated reasoning suffer from data scarcity and generalization ability. Inspired by the recent success of leveraging large language models (LLMs) for visual reasoning, we propose LLM-TPC, a novel framework that leverages the planning, tool usage, and reflection capabilities of LLMs through a ThinkProgram-reCtify loop. The Think phase first decomposes the compositional question into a sequence of steps, and then the Program phase grounds each step to a piece of code and calls carefully designed 3D visual perception modules. Finally, the Rectify phase adjusts the plan and code if the program fails to execute. Experiments and analysis on the SQA3D benchmark demonstrate the effectiveness, interpretability and robustness of our method. Our code is publicly available at https://qingrongh.github.io/LLM-TPC/.
Abstract:Learning generalizable visual representations from Internet data has yielded promising results for robotics. Yet, prevailing approaches focus on pre-training 2D representations, being sub-optimal to deal with occlusions and accurately localize objects in complex 3D scenes. Meanwhile, 3D representation learning has been limited to single-object understanding. To address these limitations, we introduce a novel 3D pre-training framework for robotics named SUGAR that captures semantic, geometric and affordance properties of objects through 3D point clouds. We underscore the importance of cluttered scenes in 3D representation learning, and automatically construct a multi-object dataset benefiting from cost-free supervision in simulation. SUGAR employs a versatile transformer-based model to jointly address five pre-training tasks, namely cross-modal knowledge distillation for semantic learning, masked point modeling to understand geometry structures, grasping pose synthesis for object affordance, 3D instance segmentation and referring expression grounding to analyze cluttered scenes. We evaluate our learned representation on three robotic-related tasks, namely, zero-shot 3D object recognition, referring expression grounding, and language-driven robotic manipulation. Experimental results show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
Abstract:The ability for robots to comprehend and execute manipulation tasks based on natural language instructions is a long-term goal in robotics. The dominant approaches for language-guided manipulation use 2D image representations, which face difficulties in combining multi-view cameras and inferring precise 3D positions and relationships. To address these limitations, we propose a 3D point cloud based policy called PolarNet for language-guided manipulation. It leverages carefully designed point cloud inputs, efficient point cloud encoders, and multimodal transformers to learn 3D point cloud representations and integrate them with language instructions for action prediction. PolarNet is shown to be effective and data efficient in a variety of experiments conducted on the RLBench benchmark. It outperforms state-of-the-art 2D and 3D approaches in both single-task and multi-task learning. It also achieves promising results on a real robot.
Abstract:While current visual captioning models have achieved impressive performance, they often assume that the image is well-captured and provides a complete view of the scene. In real-world scenarios, however, a single image may not offer a good viewpoint, hindering fine-grained scene understanding. To overcome this limitation, we propose a novel task called Embodied Captioning, which equips visual captioning models with navigation capabilities, enabling them to actively explore the scene and reduce visual ambiguity from suboptimal viewpoints. Specifically, starting at a random viewpoint, an agent must navigate the environment to gather information from different viewpoints and generate a comprehensive paragraph describing all objects in the scene. To support this task, we build the ET-Cap dataset with Kubric simulator, consisting of 10K 3D scenes with cluttered objects and three annotated paragraphs per scene. We propose a Cascade Embodied Captioning model (CaBOT), which comprises of a navigator and a captioner, to tackle this task. The navigator predicts which actions to take in the environment, while the captioner generates a paragraph description based on the whole navigation trajectory. Extensive experiments demonstrate that our model outperforms other carefully designed baselines. Our dataset, codes and models are available at https://aim3-ruc.github.io/ExploreAndTell.
Abstract:Object goal navigation aims to navigate an agent to locations of a given object category in unseen environments. Classical methods explicitly build maps of environments and require extensive engineering while lacking semantic information for object-oriented exploration. On the other hand, end-to-end learning methods alleviate manual map design and predict actions using implicit representations. Such methods, however, lack an explicit notion of geometry and may have limited ability to encode navigation history. In this work, we propose an implicit spatial map for object goal navigation. Our implicit map is recursively updated with new observations at each step using a transformer. To encourage spatial reasoning, we introduce auxiliary tasks and train our model to reconstruct explicit maps as well as to predict visual features, semantic labels and actions. Our method significantly outperforms the state of the art on the challenging MP3D dataset and generalizes well to the HM3D dataset. We successfully deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes using only a few real-world demonstrations. Code, trained models and videos are available at \url{https://www.di.ens.fr/willow/research/onav_rim/}.
Abstract:Learning visuomotor policies in simulation is much safer and cheaper than in the real world. However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots. One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR). While previous work mainly evaluates DR for disembodied tasks, such as pose estimation and object detection, here we systematically explore visual domain randomization methods and benchmark them on a rich set of challenging robotic manipulation tasks. In particular, we propose an off-line proxy task of cube localization to select DR parameters for texture randomization, lighting randomization, variations of object colors and camera parameters. Notably, we demonstrate that DR parameters have similar impact on our off-line proxy task and on-line policies. We, hence, use off-line optimized DR parameters to train visuomotor policies in simulation and directly apply such policies to a real robot. Our approach achieves 93% success rate on average when tested on a diverse set of challenging manipulation tasks. Moreover, we evaluate the robustness of policies to visual variations in real scenes and show that our simulator-trained policies outperform policies learned using real but limited data. Code, simulation environment, real robot datasets and trained models are available at https://www.di.ens.fr/willow/research/robust_s2r/.
Abstract:Automatic image captioning evaluation is critical for benchmarking and promoting advances in image captioning research. Existing metrics only provide a single score to measure caption qualities, which are less explainable and informative. Instead, we humans can easily identify the problems of captions in details, e.g., which words are inaccurate and which salient objects are not described, and then rate the caption quality. To support such informative feedback, we propose an Informative Metric for Reference-free Image Caption evaluation (InfoMetIC). Given an image and a caption, InfoMetIC is able to report incorrect words and unmentioned image regions at fine-grained level, and also provide a text precision score, a vision recall score and an overall quality score at coarse-grained level. The coarse-grained score of InfoMetIC achieves significantly better correlation with human judgements than existing metrics on multiple benchmarks. We also construct a token-level evaluation dataset and demonstrate the effectiveness of InfoMetIC in fine-grained evaluation. Our code and datasets are publicly available at https://github.com/HAWLYQ/InfoMetIC.