Abstract:Recent advancements in proactive dialogues have garnered significant attention, particularly for more complex objectives (e.g. emotion support and persuasion). Unlike traditional task-oriented dialogues, proactive dialogues demand advanced policy planning and adaptability, requiring rich scenarios and comprehensive policy repositories to develop such systems. However, existing approaches tend to rely on Large Language Models (LLMs) for user simulation and online learning, leading to biases that diverge from realistic scenarios and result in suboptimal efficiency. Moreover, these methods depend on manually defined, context-independent, coarse-grained policies, which not only incur high expert costs but also raise concerns regarding their completeness. In our work, we highlight the potential for automatically discovering policies directly from raw, real-world dialogue records. To this end, we introduce a novel dialogue policy planning framework, LDPP. It fully automates the process from mining policies in dialogue records to learning policy planning. Specifically, we employ a variant of the Variational Autoencoder to discover fine-grained policies represented as latent vectors. After automatically annotating the data with these latent policy labels, we propose an Offline Hierarchical Reinforcement Learning (RL) algorithm in the latent space to develop effective policy planning capabilities. Our experiments demonstrate that LDPP outperforms existing methods on two proactive scenarios, even surpassing ChatGPT with only a 1.8-billion-parameter LLM.
Abstract:There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.
Abstract:In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature. Traditional approaches to enhance dialogue planning in LLMs, ranging from elaborate prompt engineering to the integration of policy networks, either face efficiency issues or deliver suboptimal performance. Inspired by the dualprocess theory in psychology, which identifies two distinct modes of thinking - intuitive (fast) and analytical (slow), we propose the Dual-Process Dialogue Planning (DPDP) framework. DPDP embodies this theory through two complementary planning systems: an instinctive policy model for familiar contexts and a deliberative Monte Carlo Tree Search (MCTS) mechanism for complex, novel scenarios. This dual strategy is further coupled with a novel two-stage training regimen: offline Reinforcement Learning for robust initial policy model formation followed by MCTS-enhanced on-the-fly learning, which ensures a dynamic balance between efficiency and strategic depth. Our empirical evaluations across diverse dialogue tasks affirm DPDP's superiority in achieving both high-quality dialogues and operational efficiency, outpacing existing methods.
Abstract:In this work, we aim to learn a unified vision-based policy for a multi-fingered robot hand to manipulate different objects in diverse poses. Though prior work has demonstrated that human videos can benefit policy learning, performance improvement has been limited by physically implausible trajectories extracted from videos. Moreover, reliance on privileged object information such as ground-truth object states further limits the applicability in realistic scenarios. To address these limitations, we propose a new framework ViViDex to improve vision-based policy learning from human videos. It first uses reinforcement learning with trajectory guided rewards to train state-based policies for each video, obtaining both visually natural and physically plausible trajectories from the video. We then rollout successful episodes from state-based policies and train a unified visual policy without using any privileged information. A coordinate transformation method is proposed to significantly boost the performance. We evaluate our method on three dexterous manipulation tasks and demonstrate a large improvement over state-of-the-art algorithms.
Abstract:Reconstructing hand-held objects from monocular RGB images is an appealing yet challenging task. In this task, contacts between hands and objects provide important cues for recovering the 3D geometry of the hand-held objects. Though recent works have employed implicit functions to achieve impressive progress, they ignore formulating contacts in their frameworks, which results in producing less realistic object meshes. In this work, we explore how to model contacts in an explicit way to benefit the implicit reconstruction of hand-held objects. Our method consists of two components: explicit contact prediction and implicit shape reconstruction. In the first part, we propose a new subtask of directly estimating 3D hand-object contacts from a single image. The part-level and vertex-level graph-based transformers are cascaded and jointly learned in a coarse-to-fine manner for more accurate contact probabilities. In the second part, we introduce a novel method to diffuse estimated contact states from the hand mesh surface to nearby 3D space and leverage diffused contact probabilities to construct the implicit neural representation for the manipulated object. Benefiting from estimating the interaction patterns between the hand and the object, our method can reconstruct more realistic object meshes, especially for object parts that are in contact with hands. Extensive experiments on challenging benchmarks show that the proposed method outperforms the current state of the arts by a great margin.
Abstract:Signed distance functions (SDFs) is an attractive framework that has recently shown promising results for 3D shape reconstruction from images. SDFs seamlessly generalize to different shape resolutions and topologies but lack explicit modelling of the underlying 3D geometry. In this work, we exploit the hand structure and use it as guidance for SDF-based shape reconstruction. In particular, we address reconstruction of hands and manipulated objects from monocular RGB images. To this end, we estimate poses of hands and objects and use them to guide 3D reconstruction. More specifically, we predict kinematic chains of pose transformations and align SDFs with highly-articulated hand poses. We improve the visual features of 3D points with geometry alignment and further leverage temporal information to enhance the robustness to occlusion and motion blurs. We conduct extensive experiments on the challenging ObMan and DexYCB benchmarks and demonstrate significant improvements of the proposed method over the state of the art.
Abstract:Recent work achieved impressive progress towards joint reconstruction of hands and manipulated objects from monocular color images. Existing methods focus on two alternative representations in terms of either parametric meshes or signed distance fields (SDFs). On one side, parametric models can benefit from prior knowledge at the cost of limited shape deformations and mesh resolutions. Mesh models, hence, may fail to precisely reconstruct details such as contact surfaces of hands and objects. SDF-based methods, on the other side, can represent arbitrary details but are lacking explicit priors. In this work we aim to improve SDF models using priors provided by parametric representations. In particular, we propose a joint learning framework that disentangles the pose and the shape. We obtain hand and object poses from parametric models and use them to align SDFs in 3D space. We show that such aligned SDFs better focus on reconstructing shape details and improve reconstruction accuracy both for hands and objects. We evaluate our method and demonstrate significant improvements over the state of the art on the challenging ObMan and DexYCB benchmarks.