Abstract:Current Multilingual ASR models only support a fraction of the world's languages. Continual Learning (CL) aims to tackle this problem by adding new languages to pre-trained models while avoiding the loss of performance on existing languages, also known as Catastrophic Forgetting (CF). However, existing CL methods overlook the adaptation of the token embedding lookup table at the decoder, despite its significant contribution to CF. We propose Embedding Layer Surgery where separate copies of the token embeddings are created for each new languages, and one of the copies is selected to replace the old languages embeddings when transcribing the corresponding new language. Unfortunately, this approach means LID errors also cause incorrect ASR embedding selection. Our Task-wise Beam Search allows self-correction for such mistakes. By adapting Whisper to 10 hours of data for each of 10 unseen languages from Common Voice, results show that our method reduces the Average WER (AWER) of pre-trained languages from 14.2% to 11.9% compared with Experience Replay, without compromising the AWER of the unseen languages.
Abstract:In this work, we introduce VERSA, a unified and standardized evaluation toolkit designed for various speech, audio, and music signals. The toolkit features a Pythonic interface with flexible configuration and dependency control, making it user-friendly and efficient. With full installation, VERSA offers 63 metrics with 711 metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions. As a lightweight yet comprehensive toolkit, VERSA is versatile to support the evaluation of a wide range of downstream scenarios. To demonstrate its capabilities, this work highlights example use cases for VERSA, including audio coding, speech synthesis, speech enhancement, singing synthesis, and music generation. The toolkit is available at https://github.com/shinjiwlab/versa.
Abstract:Neural audio codecs have revolutionized audio processing by enabling speech tasks to be performed on highly compressed representations. Recent work has shown that speech separation can be achieved within these compressed domains, offering faster training and reduced inference costs. However, current approaches still rely on waveform-based loss functions, necessitating unnecessary decoding steps during training. We propose a novel embedding loss for neural audio codec-based speech separation that operates directly on compressed audio representations, eliminating the need for decoding during training. To validate our approach, we conduct comprehensive evaluations using both objective metrics and perceptual assessment techniques, including intrusive and non-intrusive methods. Our results demonstrate that embedding loss can be used to train codec-based speech separation models with a 2x improvement in training speed and computational cost while achieving better DNSMOS and STOI performance on the WSJ0-2mix dataset across 3 different pre-trained codecs.
Abstract:Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Abstract:Current emotional text-to-speech (TTS) systems face challenges in mimicking a broad spectrum of human emotions due to the inherent complexity of emotions and limitations in emotional speech datasets and models. This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance, and can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training. We train an emotional attribute predictor using only categorical labels from speech data, aligning with psychological research and incorporating anchored dimensionality reduction on self-supervised learning (SSL) features. The TTS framework converts text inputs into phonetic tokens via an autoregressive language model and uses pseudo-emotional dimensions to guide the parallel prediction of fine-grained acoustic details. Experiments conducted on the LibriTTS dataset demonstrate that our framework can synthesize speech with enhanced naturalness and a variety of emotional styles by effectively controlling emotional dimensions, even without the inclusion of any emotional speech during TTS training.
Abstract:Neural codecs have become crucial to recent speech and audio generation research. In addition to signal compression capabilities, discrete codecs have also been found to enhance downstream training efficiency and compatibility with autoregressive language models. However, as extensive downstream applications are investigated, challenges have arisen in ensuring fair comparisons across diverse applications. To address these issues, we present a new open-source platform ESPnet-Codec, which is built on ESPnet and focuses on neural codec training and evaluation. ESPnet-Codec offers various recipes in audio, music, and speech for training and evaluation using several widely adopted codec models. Together with ESPnet-Codec, we present VERSA, a standalone evaluation toolkit, which provides a comprehensive evaluation of codec performance over 20 audio evaluation metrics. Notably, we demonstrate that ESPnet-Codec can be integrated into six ESPnet tasks, supporting diverse applications.
Abstract:Continual Learning (CL) involves fine-tuning pre-trained models with new data while maintaining the performance on the pre-trained data. This is particularly relevant for expanding multilingual ASR (MASR) capabilities. However, existing CL methods, mainly designed for computer vision and reinforcement learning tasks, often yield sub-optimal results when directly applied to MASR. We hypothesise that this is because CL of the auto-regressive decoder in the MASR model is difficult. To verify this, we propose four optimizations on the decoder. They include decoder-layer gradient surgery, freezing unused token embeddings, suppressing output of newly added tokens, and learning rate re-scaling. Our experiments on adapting Whisper to 10 unseen languages from the Common Voice dataset demonstrate that these optimizations reduce the Average Word Error Rate (AWER) of pretrained languages from 14.2% to 12.4% compared with Experience Replay, without compromising the AWER of new languages.
Abstract:Recent improvements in neural audio codec (NAC) models have generated interest in adopting pre-trained codecs for a variety of speech processing applications to take advantage of the efficiencies gained from high compression, but these have yet been applied to the speech separation (SS) task. SS can benefit from high compression because the compute required for traditional SS models makes them impractical for many edge computing use cases. However, SS is a waveform-masking task where compression tends to introduce distortions that severely impact performance. Here we propose a novel task of Audio Codec-based SS, where SS is performed within the embedding space of a NAC, and propose a new model, Codecformer, to address this task. At inference, Codecformer achieves a 52x reduction in MAC while producing separation performance comparable to a cloud deployment of Sepformer. This method charts a new direction for performing efficient SS in practical scenarios.
Abstract:Recent language model-based text-to-speech (TTS) frameworks demonstrate scalability and in-context learning capabilities. However, they suffer from robustness issues due to the accumulation of errors in speech unit predictions during autoregressive language modeling. In this paper, we propose a phonetic enhanced language modeling method to improve the performance of TTS models. We leverage self-supervised representations that are phonetically rich as the training target for the autoregressive language model. Subsequently, a non-autoregressive model is employed to predict discrete acoustic codecs that contain fine-grained acoustic details. The TTS model focuses solely on linguistic modeling during autoregressive training, thereby reducing the error propagation that occurs in non-autoregressive training. Both objective and subjective evaluations validate the effectiveness of our proposed method.
Abstract:Knowledge distillation (KD) is used to enhance automatic speaker verification performance by ensuring consistency between large teacher networks and lightweight student networks at the embedding level or label level. However, the conventional label-level KD overlooks the significant knowledge from non-target speakers, particularly their classification probabilities, which can be crucial for automatic speaker verification. In this paper, we first demonstrate that leveraging a larger number of training non-target speakers improves the performance of automatic speaker verification models. Inspired by this finding about the importance of non-target speakers' knowledge, we modified the conventional label-level KD by disentangling and emphasizing the classification probabilities of non-target speakers during knowledge distillation. The proposed method is applied to three different student model architectures and achieves an average of 13.67% improvement in EER on the VoxCeleb dataset compared to embedding-level and conventional label-level KD methods.