Abstract:Neural audio codecs have revolutionized audio processing by enabling speech tasks to be performed on highly compressed representations. Recent work has shown that speech separation can be achieved within these compressed domains, offering faster training and reduced inference costs. However, current approaches still rely on waveform-based loss functions, necessitating unnecessary decoding steps during training. We propose a novel embedding loss for neural audio codec-based speech separation that operates directly on compressed audio representations, eliminating the need for decoding during training. To validate our approach, we conduct comprehensive evaluations using both objective metrics and perceptual assessment techniques, including intrusive and non-intrusive methods. Our results demonstrate that embedding loss can be used to train codec-based speech separation models with a 2x improvement in training speed and computational cost while achieving better DNSMOS and STOI performance on the WSJ0-2mix dataset across 3 different pre-trained codecs.
Abstract:Continual Learning (CL) involves fine-tuning pre-trained models with new data while maintaining the performance on the pre-trained data. This is particularly relevant for expanding multilingual ASR (MASR) capabilities. However, existing CL methods, mainly designed for computer vision and reinforcement learning tasks, often yield sub-optimal results when directly applied to MASR. We hypothesise that this is because CL of the auto-regressive decoder in the MASR model is difficult. To verify this, we propose four optimizations on the decoder. They include decoder-layer gradient surgery, freezing unused token embeddings, suppressing output of newly added tokens, and learning rate re-scaling. Our experiments on adapting Whisper to 10 unseen languages from the Common Voice dataset demonstrate that these optimizations reduce the Average Word Error Rate (AWER) of pretrained languages from 14.2% to 12.4% compared with Experience Replay, without compromising the AWER of new languages.