Abstract:Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network, offering the potential for improved efficiency and seamless integration with generative large language models. As an end-to-end paradigm, generative retrieval adopts a learned differentiable search index to conduct retrieval by directly generating document identifiers through corpus-specific constrained decoding. The generalization capabilities of generative retrieval on out-of-distribution corpora have gathered significant attention. In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search. We begin with the Bayes-optimal setting where the generative retrieval model exactly captures the underlying relevance distribution of all possible documents. Then we apply the model to specific corpora by simply adding corpus-specific constraints. Our main findings are two-fold: (i) For the effect of constraints, we derive a lower bound of the error, in terms of the KL divergence between the ground-truth and the model-predicted step-wise marginal distributions. (ii) For the beam search algorithm used during generation, we reveal that the usage of marginal distributions may not be an ideal approach. This paper aims to improve our theoretical understanding of the generalization capabilities of the auto-regressive decoding retrieval paradigm, laying a foundation for its limitations and inspiring future advancements toward more robust and generalizable generative retrieval.
Abstract:Knowledge is fundamental to the overall capabilities of Large Language Models (LLMs). The knowledge paradigm of a model, which dictates how it encodes and utilizes knowledge, significantly affects its performance. Despite the continuous development of LLMs under existing knowledge paradigms, issues within these frameworks continue to constrain model potential. This blog post highlight three critical open problems limiting model capabilities: (1) challenges in knowledge updating for LLMs, (2) the failure of reverse knowledge generalization (the reversal curse), and (3) conflicts in internal knowledge. We review recent progress made in addressing these issues and discuss potential general solutions. Based on observations in these areas, we propose a hypothetical paradigm based on Contextual Knowledge Scaling, and further outline implementation pathways that remain feasible within contemporary techniques. Evidence suggests this approach holds potential to address current shortcomings, serving as our vision for future model paradigms. This blog post aims to provide researchers with a brief overview of progress in LLM knowledge systems, while provide inspiration for the development of next-generation model architectures.
Abstract:Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets. LLM unlearning aims to eliminate the influence of such harmful information while maintaining the model's overall performance. Existing unlearning methods, represented by gradient ascent-based approaches, primarily focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning. In this paper, through both theoretical and experimental analyses, we first demonstrate that a key reason for the suboptimal unlearning performance is that models can reconstruct the target content through reasoning with logically related knowledge. To address this issue, we propose Unlearning Improvement via Parameter Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets. Experimental results show that UIPE significantly enhances the performance of various mainstream LLM unlearning methods on the TOFU benchmark.
Abstract:This paper presents a combined approach to enhancing the effectiveness of Jacobian-Free Newton-Krylov (JFNK) method by deep reinforcement learning (DRL) in identifying fixed points within the 2D Kuramoto-Sivashinsky Equation (KSE). JFNK approach entails a good initial guess for improved convergence when searching for fixed points. With a properly defined reward function, we utilise DRL as a preliminary step to enhance the initial guess in the converging process. We report new results of fixed points in the 2D KSE which have not been reported in the literature. Additionally, we explored control optimization for the 2D KSE to navigate the system trajectories between known fixed points, based on parallel reinforcement learning techniques. This combined method underscores the improved JFNK approach to finding new fixed-point solutions within the context of 2D KSE, which may be instructive for other high-dimensional dynamical systems.
Abstract:As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.
Abstract:Knowledge editing has been proposed as an effective method for updating and correcting the internal knowledge of Large Language Models (LLMs). However, existing editing methods often struggle with complex tasks, such as multi-hop reasoning. In this paper, we identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target, hindering the generalization of new knowledge in complex scenarios. We attribute this issue to the current editing paradigm, which places excessive emphasis on the direct correspondence between the input prompt and the edit target for each edit sample. To further explore this issue, we introduce a new benchmark, EVOKE (EValuation of Editing Overfit in Knowledge Editing), along with fine-grained evaluation metrics. Through comprehensive experiments and analysis, we demonstrate that Editing Overfit is prevalent in current editing methods and that common overfitting mitigation strategies are of limited effectiveness in knowledge editing. To overcome this, inspired by LLMs' knowledge recall mechanisms, we propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge similarly to how unedited LLMs leverage knowledge through in-context learning. Extensive experimental results across a wide range of tasks validate the effectiveness of LTI in mitigating Editing Overfit.
Abstract:We apply a state-of-the-art difference-in-differences approach to estimate the impact of ChatGPT's release on the writing style of condensed matter papers on arXiv. Our analysis reveals a statistically significant improvement in the English quality of abstracts written by non-native English speakers. Importantly, this improvement remains robust even after accounting for other potential factors, confirming that it can be attributed to the release of ChatGPT. This indicates widespread adoption of the tool. Following the release of ChatGPT, there is a significant increase in the use of unique words, while the frequency of rare words decreases. Across language families, the changes in writing style are significant for authors from the Latin and Ural-Altaic groups, but not for those from the Germanic or other Indo-European groups.
Abstract:Large language models (LLMs) face challenges with internal knowledge inaccuracies and outdated information. Knowledge editing has emerged as a pivotal approach to mitigate these issues. Although current knowledge editing techniques exhibit promising performance in single-hop reasoning tasks, they show limitations when applied to multi-hop reasoning. Drawing on cognitive neuroscience and the operational mechanisms of LLMs, we hypothesize that the residual single-hop knowledge after editing causes edited models to revert to their original answers when processing multi-hop questions, thereby undermining their performance in multihop reasoning tasks. To validate this hypothesis, we conduct a series of experiments that empirically confirm our assumptions. Building on the validated hypothesis, we propose a novel knowledge editing method that incorporates a Knowledge Erasure mechanism for Large language model Editing (KELE). Specifically, we design an erasure function for residual knowledge and an injection function for new knowledge. Through joint optimization, we derive the optimal recall vector, which is subsequently utilized within a rank-one editing framework to update the parameters of targeted model layers. Extensive experiments on GPT-J and GPT-2 XL demonstrate that KELE substantially enhances the multi-hop reasoning capability of edited LLMs.
Abstract:Open-world 3D reconstruction models have recently garnered significant attention. However, without sufficient 3D inductive bias, existing methods typically entail expensive training costs and struggle to extract high-quality 3D meshes. In this work, we introduce MeshFormer, a sparse-view reconstruction model that explicitly leverages 3D native structure, input guidance, and training supervision. Specifically, instead of using a triplane representation, we store features in 3D sparse voxels and combine transformers with 3D convolutions to leverage an explicit 3D structure and projective bias. In addition to sparse-view RGB input, we require the network to take input and generate corresponding normal maps. The input normal maps can be predicted by 2D diffusion models, significantly aiding in the guidance and refinement of the geometry's learning. Moreover, by combining Signed Distance Function (SDF) supervision with surface rendering, we directly learn to generate high-quality meshes without the need for complex multi-stage training processes. By incorporating these explicit 3D biases, MeshFormer can be trained efficiently and deliver high-quality textured meshes with fine-grained geometric details. It can also be integrated with 2D diffusion models to enable fast single-image-to-3D and text-to-3D tasks. Project page: https://meshformer3d.github.io
Abstract:Multimodal out-of-context news is a common type of misinformation on online media platforms. This involves posting a caption, alongside an invalid out-of-context news image. Reflecting its importance, researchers have developed models to detect such misinformation. However, a common limitation of these models is that they only consider the scenario where pre-labeled data is available for each domain, failing to address the out-of-context news detection on unlabeled domains (e.g., unverified news on new topics or agencies). In this work, we therefore focus on domain adaptive out-of-context news detection. In order to effectively adapt the detection model to unlabeled news topics or agencies, we propose ConDA-TTA (Contrastive Domain Adaptation with Test-Time Adaptation) which applies contrastive learning and maximum mean discrepancy (MMD) to learn the domain-invariant feature. In addition, it leverages target domain statistics during test-time to further assist domain adaptation. Experimental results show that our approach outperforms baselines in 5 out of 7 domain adaptation settings on two public datasets, by as much as 2.93% in F1 and 2.08% in accuracy.