Abstract:Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.
Abstract:Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
Abstract:With the continuous improvement of people's living standards and fast-paced working conditions, pre-made dishes are becoming increasingly popular among families and restaurants due to their advantages of time-saving, convenience, variety, cost-effectiveness, standard quality, etc. Object detection is a key technology for selecting ingredients and evaluating the quality of dishes in the pre-made dishes industry. To date, many object detection approaches have been proposed. However, accurate object detection of pre-made dishes is extremely difficult because of overlapping occlusion of ingredients, similarity of ingredients, and insufficient light in the processing environment. As a result, the recognition scene is relatively complex and thus leads to poor object detection by a single model. To address this issue, this paper proposes a Differential Evolution Integrated Hybrid Deep Learning (DEIHDL) model. The main idea of DEIHDL is three-fold: 1) three YOLO-based and transformer-based base models are developed respectively to increase diversity for detecting objects of pre-made dishes, 2) the three base models are integrated by differential evolution optimized self-adjusting weights, and 3) weighted boxes fusion strategy is employed to score the confidence of the three base models during the integration. As such, DEIHDL possesses the multi-performance originating from the three base models to achieve accurate object detection in complex pre-made dish scenes. Extensive experiments on real datasets demonstrate that the proposed DEIHDL model significantly outperforms the base models in detecting objects of pre-made dishes.
Abstract:Cognitive diagnosis (CD) utilizes students' existing studying records to estimate their mastery of unknown knowledge concepts, which is vital for evaluating their learning abilities. Accurate CD is extremely challenging because CD is associated with complex relationships and mechanisms among students, knowledge concepts, studying records, etc. However, existing approaches loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for CD. Different from them, this paper innovatively proposes an End-to-end Graph Neural Networks-based Cognitive Diagnosis (EGNN-CD) model. EGNN-CD consists of three main parts: knowledge concept network (KCN), graph neural networks-based feature extraction (GNNFE), and cognitive ability prediction (CAP). First, KCN constructs CD-related interaction by comprehensively extracting physical information from students, exercises, and knowledge concepts. Second, a four-channel GNNFE is designed to extract high-order and individual features from the constructed KCN. Finally, CAP employs a multi-layer perceptron to fuse the extracted features to predict students' learning abilities in an end-to-end learning way. With such designs, the feature extractions and fusions are guaranteed to be comprehensive and optimal for CD. Extensive experiments on three real datasets demonstrate that our EGNN-CD achieves significantly higher accuracy than state-of-the-art models in CD.
Abstract:Quantifying uncertainties for machine learning models is a critical step to reduce human verification effort by detecting predictions with low confidence. This paper proposes a method for uncertainty quantification (UQ) of table structure recognition (TSR). The proposed UQ method is built upon a mixture-of-expert approach termed Test-Time Augmentation (TTA). Our key idea is to enrich and diversify the table representations, to spotlight the cells with high recognition uncertainties. To evaluate the effectiveness, we proposed two heuristics to differentiate highly uncertain cells from normal cells, namely, masking and cell complexity quantification. Masking involves varying the pixel intensity to deem the detection uncertainty. Cell complexity quantification gauges the uncertainty of each cell by its topological relation with neighboring cells. The evaluation results based on standard benchmark datasets demonstrate that the proposed method is effective in quantifying uncertainty in TSR models. To our best knowledge, this study is the first of its kind to enable UQ in TSR tasks. Our code and data are available at: https://github.com/lamps-lab/UQTTA.git.
Abstract:Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.
Abstract:Face images contain a wide variety of attribute information. In this paper, we propose a generalized framework for joint estimation of ordinal and nominal attributes based on information sharing. We tackle the correlation problem between heterogeneous attributes using hard parameter sharing of shallow features, and trade-off multiple loss functions by considering homoskedastic uncertainty for each attribute estimation task. This leads to optimal estimation of multiple attributes of the face and reduces the training cost of multitask learning. Experimental results on benchmarks with multiple face attributes show that the proposed approach has superior performance compared to state of the art. Finally, we discuss the bias issues arising from the proposed approach in face attribute estimation and validate its feasibility on edge systems.
Abstract:Document AI aims to automatically analyze documents by leveraging natural language processing and computer vision techniques. One of the major tasks of Document AI is document layout analysis, which structures document pages by interpreting the content and spatial relationships of layout, image, and text. This task can be image-centric, wherein the aim is to identify and label various regions such as authors and paragraphs, or text-centric, where the focus is on classifying individual words in a document. Although there are increasingly sophisticated methods for improving layout analysis, doubts remain about the extent to which their findings can be generalized to a broader context. Specifically, prior work developed systems based on very different architectures, such as transformer-based, graph-based, and CNNs. However, no work has mentioned the effectiveness of these models in a comparative analysis. Moreover, while language-independent Document AI models capable of knowledge transfer have been developed, it remains to be investigated to what degree they can effectively transfer knowledge. In this study, we aim to fill these gaps by conducting a comparative evaluation of state-of-the-art models in document layout analysis and investigating the potential of cross-lingual layout analysis by utilizing machine translation techniques.
Abstract:End-to-end (E2E) systems have shown comparable performance to hybrid systems for automatic speech recognition (ASR). Word timings, as a by-product of ASR, are essential in many applications, especially for subtitling and computer-aided pronunciation training. In this paper, we improve the frame-level classifier for word timings in E2E system by introducing label priors in connectionist temporal classification (CTC) loss, which is adopted from prior works, and combining low-level Mel-scale filter banks with high-level ASR encoder output as input feature. On the internal Chinese corpus, the proposed method achieves 95.68%/94.18% compared to the hybrid system 93.0%/90.22% on the word timing accuracy metrics. It also surpass a previous E2E approach with an absolute increase of 4.80%/8.02% on the metrics on 7 languages. In addition, we further improve word timing accuracy by delaying CTC peaks with frame-wise knowledge distillation, though only experimenting on LibriSpeech.
Abstract:3D model reconstruction from a single image has achieved great progress with the recent deep generative models. However, the conventional reconstruction approaches with template mesh deformation and implicit fields have difficulty in reconstructing non-watertight 3D mesh models, such as garments. In contrast to image-based modeling, the sketch-based approach can help users generate 3D models to meet the design intentions from hand-drawn sketches. In this study, we propose Sketch2Cloth, a sketch-based 3D garment generation system using the unsigned distance fields from the user's sketch input. Sketch2Cloth first estimates the unsigned distance function of the target 3D model from the sketch input, and extracts the mesh from the estimated field with Marching Cubes. We also provide the model editing function to modify the generated mesh. We verified the proposed Sketch2Cloth with quantitative evaluations on garment generation and editing with a state-of-the-art approach.