Abstract:The rise of generative AI is transforming the landscape of digital imagery, and exerting a significant influence on online creative communities. This has led to the emergence of AI-Generated Content (AIGC) social platforms, such as Civitai. These distinctive social platforms allow users to build and share their own generative AI models, thereby enhancing the potential for more diverse artistic expression. Designed in the vein of social networks, they also provide artists with the means to showcase their creations (generated from the models), engage in discussions, and obtain feedback, thus nurturing a sense of community. Yet, this openness also raises concerns about the abuse of such platforms, e.g., using models to disseminate deceptive deepfakes or infringe upon copyrights. To explore this, we conduct the first comprehensive empirical study of an AIGC social platform, focusing on its use for generating abusive content. As an exemplar, we construct a comprehensive dataset covering Civitai, the largest available AIGC social platform. Based on this dataset of 87K models and 2M images, we explore the characteristics of content and discuss strategies for moderation to better govern these platforms.
Abstract:Harnessing the potential of large language models (LLMs) like ChatGPT can help address social challenges through inclusive, ethical, and sustainable means. In this paper, we investigate the extent to which ChatGPT can annotate data for social computing tasks, aiming to reduce the complexity and cost of undertaking web research. To evaluate ChatGPT's potential, we re-annotate seven datasets using ChatGPT, covering topics related to pressing social issues like COVID-19 misinformation, social bot deception, cyberbully, clickbait news, and the Russo-Ukrainian War. Our findings demonstrate that ChatGPT exhibits promise in handling these data annotation tasks, albeit with some challenges. Across the seven datasets, ChatGPT achieves an average annotation F1-score of 72.00%. Its performance excels in clickbait news annotation, correctly labeling 89.66% of the data. However, we also observe significant variations in performance across individual labels. Our study reveals predictable patterns in ChatGPT's annotation performance. Thus, we propose GPT-Rater, a tool to predict if ChatGPT can correctly label data for a given annotation task. Researchers can use this to identify where ChatGPT might be suitable for their annotation requirements. We show that GPT-Rater effectively predicts ChatGPT's performance. It performs best on a clickbait headlines dataset by achieving an average F1-score of 95.00%. We believe that this research opens new avenues for analysis and can reduce barriers to engaging in social computing research.
Abstract:How similar are politicians to those who vote for them? This is a critical question at the heart of democratic representation and particularly relevant at times when political dissatisfaction and populism are on the rise. To answer this question we compare the online discourse of elected politicians and their constituents. We collect a two and a half years (September 2020 - February 2023) constituency-level dataset for USA and UK that includes: (i) the Twitter timelines (5.6 Million tweets) of elected political representatives (595 UK Members of Parliament and 433 USA Representatives), (ii) the Nextdoor posts (21.8 Million posts) of the constituency (98.4% USA and 91.5% UK constituencies). We find that elected politicians tend to be equally similar to their constituents in terms of content and style regardless of whether a constituency elects a right or left-wing politician. The size of the electoral victory and the level of income of a constituency shows a nuanced picture. The narrower the electoral victory, the more similar the style and the more dissimilar the content is. The lower the income of a constituency, the more similar the content is. In terms of style, poorer constituencies tend to have a more similar sentiment and more dissimilar psychological text traits (i.e. measured with LIWC categories).
Abstract:Multimodal out-of-context news is a common type of misinformation on online media platforms. This involves posting a caption, alongside an invalid out-of-context news image. Reflecting its importance, researchers have developed models to detect such misinformation. However, a common limitation of these models is that they only consider the scenario where pre-labeled data is available for each domain, failing to address the out-of-context news detection on unlabeled domains (e.g., unverified news on new topics or agencies). In this work, we therefore focus on domain adaptive out-of-context news detection. In order to effectively adapt the detection model to unlabeled news topics or agencies, we propose ConDA-TTA (Contrastive Domain Adaptation with Test-Time Adaptation) which applies contrastive learning and maximum mean discrepancy (MMD) to learn the domain-invariant feature. In addition, it leverages target domain statistics during test-time to further assist domain adaptation. Experimental results show that our approach outperforms baselines in 5 out of 7 domain adaptation settings on two public datasets, by as much as 2.93% in F1 and 2.08% in accuracy.
Abstract:The recent development of decentralised and interoperable social networks (such as the "fediverse") creates new challenges for content moderators. This is because millions of posts generated on one server can easily "spread" to another, even if the recipient server has very different moderation policies. An obvious solution would be to leverage moderation tools to automatically tag (and filter) posts that contravene moderation policies, e.g. related to toxic speech. Recent work has exploited the conversational context of a post to improve this automatic tagging, e.g. using the replies to a post to help classify if it contains toxic speech. This has shown particular potential in environments with large training sets that contain complete conversations. This, however, creates challenges in a decentralised context, as a single conversation may be fragmented across multiple servers. Thus, each server only has a partial view of an entire conversation because conversations are often federated across servers in a non-synchronized fashion. To address this, we propose a decentralised conversation-aware content moderation approach suitable for the fediverse. Our approach employs a graph deep learning model (GraphNLI) trained locally on each server. The model exploits local data to train a model that combines post and conversational information captured through random walks to detect toxicity. We evaluate our approach with data from Pleroma, a major decentralised and interoperable micro-blogging network containing 2 million conversations. Our model effectively detects toxicity on larger instances, exclusively trained using their local post information (0.8837 macro-F1). Our approach has considerable scope to improve moderation in decentralised and interoperable social networks such as Pleroma or Mastodon.
Abstract:Recent research has highlighted the potential of LLM applications, like ChatGPT, for performing label annotation on social computing text. However, it is already well known that performance hinges on the quality of the input prompts. To address this, there has been a flurry of research into prompt tuning -- techniques and guidelines that attempt to improve the quality of prompts. Yet these largely rely on manual effort and prior knowledge of the dataset being annotated. To address this limitation, we propose APT-Pipe, an automated prompt-tuning pipeline. APT-Pipe aims to automatically tune prompts to enhance ChatGPT's text classification performance on any given dataset. We implement APT-Pipe and test it across twelve distinct text classification datasets. We find that prompts tuned by APT-Pipe help ChatGPT achieve higher weighted F1-score on nine out of twelve experimented datasets, with an improvement of 7.01% on average. We further highlight APT-Pipe's flexibility as a framework by showing how it can be extended to support additional tuning mechanisms.
Abstract:From health to education, income impacts a huge range of life choices. Earlier research has leveraged data from online social networks to study precisely this impact. In this paper, we ask the opposite question: do different levels of income result in different online behaviors? We demonstrate it does. We present the first large-scale study of Nextdoor, a popular location-based social network. We collect 2.6 Million posts from 64,283 neighborhoods in the United States and 3,325 neighborhoods in the United Kingdom, to examine whether online discourse reflects the income and income inequality of a neighborhood. We show that posts from neighborhoods with different incomes indeed differ, e.g. richer neighborhoods have a more positive sentiment and discuss crimes more, even though their actual crime rates are much lower. We then show that user-generated content can predict both income and inequality. We train multiple machine learning models and predict both income (R-squared=0.841) and inequality (R-squared=0.77).
Abstract:The release of ChatGPT has uncovered a range of possibilities whereby large language models (LLMs) can substitute human intelligence. In this paper, we seek to understand whether ChatGPT has the potential to reproduce human-generated label annotations in social computing tasks. Such an achievement could significantly reduce the cost and complexity of social computing research. As such, we use ChatGPT to relabel five seminal datasets covering stance detection (2x), sentiment analysis, hate speech, and bot detection. Our results highlight that ChatGPT does have the potential to handle these data annotation tasks, although a number of challenges remain. ChatGPT obtains an average accuracy 0.609. Performance is highest for the sentiment analysis dataset, with ChatGPT correctly annotating 64.9% of tweets. Yet, we show that performance varies substantially across individual labels. We believe this work can open up new lines of analysis and act as a basis for future research into the exploitation of ChatGPT for human annotation tasks.
Abstract:Online Social Networks (OSNs) play a significant role in information sharing during a crisis. The data collected during such a crisis can reflect the large scale public opinions and sentiment. In addition, OSN data can also be used to study different campaigns that are employed by various entities to engineer public opinions. Such information sharing campaigns can range from spreading factual information to propaganda and misinformation. We provide a Twitter dataset of the 2022 Russo-Ukrainian conflict. In the first release, we share over 1.6 million tweets shared during the 1st week of the crisis.
Abstract:Numerous open-source and commercial malware detectors are available. However, the efficacy of these tools has been threatened by new adversarial attacks, whereby malware attempts to evade detection using, for example, machine learning techniques. In this work, we design an adversarial evasion attack that relies on both feature-space and problem-space manipulation. It uses explainability-guided feature selection to maximize evasion by identifying the most critical features that impact detection. We then use this attack as a benchmark to evaluate several state-of-the-art malware detectors. We find that (i) state-of-the-art malware detectors are vulnerable to even simple evasion strategies, and they can easily be tricked using off-the-shelf techniques; (ii) feature-space manipulation and problem-space obfuscation can be combined to enable evasion without needing white-box understanding of the detector; (iii) we can use explainability approaches (e.g., SHAP) to guide the feature manipulation and explain how attacks can transfer across multiple detectors. Our findings shed light on the weaknesses of current malware detectors, as well as how they can be improved.