Abstract:Learning the prior knowledge of the 3D human-object spatial relation is crucial for reconstructing human-object interaction from images and understanding how humans interact with objects in 3D space. Previous works learn this prior from datasets collected in controlled environments, but due to the diversity of domains, they struggle to generalize to real-world scenarios. To overcome this limitation, we present a 2D-supervised method that learns the 3D human-object spatial relation prior purely from 2D images in the wild. Our method utilizes a flow-based neural network to learn the prior distribution of the 2D human-object keypoint layout and viewports for each image in the dataset. The effectiveness of the prior learned from 2D images is demonstrated on the human-object reconstruction task by applying the prior to tune the relative pose between the human and the object during the post-optimization stage. To validate and benchmark our method on in-the-wild images, we collect the WildHOI dataset from the YouTube website, which consists of various interactions with 8 objects in real-world scenarios. We conduct the experiments on the indoor BEHAVE dataset and the outdoor WildHOI dataset. The results show that our method achieves almost comparable performance with fully 3D supervised methods on the BEHAVE dataset, even if we have only utilized the 2D layout information, and outperforms previous methods in terms of generality and interaction diversity on in-the-wild images.
Abstract:Modeling and capturing the 3D spatial arrangement of the human and the object is the key to perceiving 3D human-object interaction from monocular images. In this work, we propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation. Compared with previous works which use contact map or implicit distance filed to encode 3D human-object spatial relations, our method is a simple and efficient way to encode the highly detailed spatial correlation between the human and object. Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image. During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples based on this posterior distribution and minimizing the 2D-3D corresponding reprojection loss. Extensive experimental results show that our method achieves impressive results on two challenging benchmarks, BEHAVE and InterCap datasets.
Abstract:Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality. It has been verified that utilizing diffusion policies can significantly improve the performance of RL algorithms in continuous control tasks by overcoming the limitations of unimodal policies, such as Gaussian policies, and providing the agent with enhanced exploration capabilities. However, existing works mainly focus on the application of diffusion policies in offline RL, while their incorporation into online RL is less investigated. The training objective of the diffusion model, known as the variational lower bound, cannot be optimized directly in online RL due to the unavailability of 'good' actions. This leads to difficulties in conducting diffusion policy improvement. To overcome this, we propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO). Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions. To fulfill these conditions, the Q-weight transformation functions are introduced for general scenarios. Additionally, to further enhance the exploration capability of the diffusion policy, we design a special entropy regularization term. We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions. Consequently, the QVPO algorithm leverages the exploration capabilities and multimodality of diffusion policies, preventing the RL agent from converging to a sub-optimal policy. To verify the effectiveness of QVPO, we conduct comprehensive experiments on MuJoCo benchmarks. The final results demonstrate that QVPO achieves state-of-the-art performance on both cumulative reward and sample efficiency.
Abstract:Federated Prompt Learning (FPL) incorporates large pre-trained Vision-Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model's ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Federated Prompt Learning with CLIP Generalization and low-rank Personalization (FedPGP), which employs pre-trained CLIP to provide knowledge-guidance on the global prompt for improved generalization and incorporates a low-rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt-wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base-to-novel generalization in both category-level and domain-level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization.
Abstract:Estimating full-body human motion via sparse tracking signals from head-mounted displays and hand controllers in 3D scenes is crucial to applications in AR/VR. One of the biggest challenges to this task is the one-to-many mapping from sparse observations to dense full-body motions, which endowed inherent ambiguities. To help resolve this ambiguous problem, we introduce a new framework to combine rich contextual information provided by scenes to benefit full-body motion tracking from sparse observations. To estimate plausible human motions given sparse tracking signals and 3D scenes, we develop $\text{S}^2$Fusion, a unified framework fusing \underline{S}cene and sparse \underline{S}ignals with a conditional dif\underline{Fusion} model. $\text{S}^2$Fusion first extracts the spatial-temporal relations residing in the sparse signals via a periodic autoencoder, and then produces time-alignment feature embedding as additional inputs. Subsequently, by drawing initial noisy motion from a pre-trained prior, $\text{S}^2$Fusion utilizes conditional diffusion to fuse scene geometry and sparse tracking signals to generate full-body scene-aware motions. The sampling procedure of $\text{S}^2$Fusion is further guided by a specially designed scene-penetration loss and phase-matching loss, which effectively regularizes the motion of the lower body even in the absence of any tracking signals, making the generated motion much more plausible and coherent. Extensive experimental results have demonstrated that our $\text{S}^2$Fusion outperforms the state-of-the-art in terms of estimation quality and smoothness.
Abstract:Humans naturally interact with both others and the surrounding multiple objects, engaging in various social activities. However, recent advances in modeling human-object interactions mostly focus on perceiving isolated individuals and objects, due to fundamental data scarcity. In this paper, we introduce HOI-M3, a novel large-scale dataset for modeling the interactions of Multiple huMans and Multiple objects. Notably, it provides accurate 3D tracking for both humans and objects from dense RGB and object-mounted IMU inputs, covering 199 sequences and 181M frames of diverse humans and objects under rich activities. With the unique HOI-M3 dataset, we introduce two novel data-driven tasks with companion strong baselines: monocular capture and unstructured generation of multiple human-object interactions. Extensive experiments demonstrate that our dataset is challenging and worthy of further research about multiple human-object interactions and behavior analysis. Our HOI-M3 dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research.
Abstract:Gaze plays a crucial role in revealing human attention and intention, shedding light on the cognitive processes behind human actions. The integration of gaze guidance with the dynamics of hand-object interactions boosts the accuracy of human motion prediction. However, the lack of datasets that capture the intricate relationship and consistency among gaze, hand, and object movements remains a substantial hurdle. In this paper, we introduce the first Gaze-guided Hand-Object Interaction dataset, GazeHOI, and present a novel task for synthesizing gaze-guided hand-object interactions. Our dataset, GazeHOI, features simultaneous 3D modeling of gaze, hand, and object interactions, comprising 479 sequences with an average duration of 19.1 seconds, 812 sub-sequences, and 33 objects of various sizes. We propose a hierarchical framework centered on a gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. In the pre-diffusion phase, we separate gaze conditions into spatial-temporal features and goal pose conditions at different levels of information granularity. During the diffusion phase, two gaze-conditioned diffusion models are stacked to simplify the complex synthesis of hand-object motions. Here, the object motion diffusion model generates sequences of object motions based on gaze conditions, while the hand motion diffusion model produces hand motions based on the generated object motion. To improve fine-grained goal pose alignment, we introduce a Spherical Gaussian constraint to guide the denoising step. In the subsequent post-diffusion phase, we optimize the generated hand motions using contact consistency. Our extensive experiments highlight the uniqueness of our dataset and the effectiveness of our approach.
Abstract:This paper addresses new methodologies to deal with the challenging task of generating dynamic Human-Object Interactions from textual descriptions (Text2HOI). While most existing works assume interactions with limited body parts or static objects, our task involves addressing the variation in human motion, the diversity of object shapes, and the semantic vagueness of object motion simultaneously. To tackle this, we propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR). THOR is a cohesive diffusion model equipped with a relation intervention mechanism. In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion. This intervention enhances the spatial-temporal relations between humans and objects, with human-centric interaction representation providing additional guidance for synthesizing consistent motion from text. To achieve more reasonable and realistic results, interaction losses is introduced at different levels of motion granularity. Moreover, we construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset. Both quantitative and qualitative experiments demonstrate the effectiveness of our proposed model.
Abstract:Prompt learning in pretrained visual-language models has shown remarkable flexibility across various downstream tasks. Leveraging its inherent lightweight nature, recent research attempted to integrate the powerful pretrained models into federated learning frameworks to simultaneously reduce communication costs and promote local training on insufficient data. Despite these efforts, current federated prompt learning methods lack specialized designs to systematically address severe data heterogeneities, e.g., data distribution with both label and feature shifts involved. To address this challenge, we present Federated Prompts Cooperation via Optimal Transport (FedOTP), which introduces efficient collaborative prompt learning strategies to capture diverse category traits on a per-client basis. Specifically, for each client, we learn a global prompt to extract consensus knowledge among clients, and a local prompt to capture client-specific category characteristics. Unbalanced Optimal Transport is then employed to align local visual features with these prompts, striking a balance between global consensus and local personalization. Extensive experiments on datasets with various types of heterogeneities have demonstrated that our FedOTP outperforms the state-of-the-art methods.
Abstract:Unsupervised cross-domain image retrieval (UCIR) aims to retrieve images sharing the same category across diverse domains without relying on labeled data. Prior approaches have typically decomposed the UCIR problem into two distinct tasks: intra-domain representation learning and cross-domain feature alignment. However, these segregated strategies overlook the potential synergies between these tasks. This paper introduces ProtoOT, a novel Optimal Transport formulation explicitly tailored for UCIR, which integrates intra-domain feature representation learning and cross-domain alignment into a unified framework. ProtoOT leverages the strengths of the K-means clustering method to effectively manage distribution imbalances inherent in UCIR. By utilizing K-means for generating initial prototypes and approximating class marginal distributions, we modify the constraints in Optimal Transport accordingly, significantly enhancing its performance in UCIR scenarios. Furthermore, we incorporate contrastive learning into the ProtoOT framework to further improve representation learning. This encourages local semantic consistency among features with similar semantics, while also explicitly enforcing separation between features and unmatched prototypes, thereby enhancing global discriminativeness. ProtoOT surpasses existing state-of-the-art methods by a notable margin across benchmark datasets. Notably, on DomainNet, ProtoOT achieves an average P@200 enhancement of 24.44%, and on Office-Home, it demonstrates a P@15 improvement of 12.12%. Code is available at https://github.com/HCVLAB/ProtoOT.